首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用40 t EBT电弧炉40 t LF 150mm × 150mm方坯连铸工艺 ,开发了成分(%)为: 0.17~0.25C,1.20~1.45Mn,0.02~0.04Nb的400 MPaⅢ级Φ10~25mm铌微合金化钢筋。钢筋的力学性能为σs 420~490 MPa ,σb 590~680 MPa ;δ5 24%~30% ,自然时效8周后屈服强度下降较少。生产的Nb微合金化400 MPa Ⅲ级钢筋符合GB1499-1998标准要求。用0.02 %~0.04%Nb取代0.05%~0.10%V时,吨钢成本显著降低。  相似文献   

3.
通过120t顶底复吹转炉-120tLF精炼-板坯连铸-3500轧机工艺路线,成功开发了国标耐候钢Q355NH。通过微合金化的成分设计方案、控制钢水纯净度,采用合理的轧制和冷却工艺,得到钢质纯净、组织细化的钢板,各项力学性能良好,产品质量完全符合GB/T 4171-2008。  相似文献   

4.
通过化学成分设计和冶炼、热轧及冷轧工艺的控制,研制出铌钛微合金化高屈服强度IF钢。测定了该钢的力学性能和成形极限图(FLD),分析了不同轧态的微观组织。结果表明,研制开发出的铌钛微合金化IF钢具有高的屈服强度和优良的成形性能。  相似文献   

5.
运用电子显微镜和化学相分析等多种实验手段研究了Ti微合金化高强耐候钢中的析出物,并在热力学计算的基础上分析了其析出过程.结果表明:钢中主要存在TiC,TiCN,Ti4C2S2,TiN等析出物,连轧前TiN的析出过程已基本完成;大量纳米尺寸的TiC球形析出物粒子在铁素体的位错线上分布;Ti含量增加改变了MC相的粒度分布,小尺寸粒子的体积分数显著增加,增强了沉淀强化的效果.  相似文献   

6.
介绍了屈服强度700MPa级Ti微合金化高强钢ZJ700MC的成分设计、冶炼、连铸连轧工艺和力学性能,分析认为,铁素体晶粒细化和TiC沉淀强化使钢的强度显著提高,同时保持良好的韧塑性。该钢已实现工业化批量生产,并应用于集装箱及专用车辆制造。  相似文献   

7.
介绍了采用铌钒复合微合金化技术研制开发HRB400钢筋的工艺和产品性能,分析了冶炼、轧制工艺及合金元素对钢筋性能的影响规律,并应用回归分析方法确定了铌、钒元素对性能影响的经验公式,对开发铌钒微合金钢具有很好的指导意义。实践证明,采用铌钒复合技术生产HRB400钢筋,不仅其机械性能良好,而且具有低成本优势。  相似文献   

8.
基于珠钢EAF-LF-CSP流程,以集装箱板的成分为基础,研究了Ti的加入范围,设计出高强耐候钢中的化学成分,开发出屈服强度为450-700MPa的高强钢。  相似文献   

9.
铌钛微合金化汽车大梁钢BM510L的开发   总被引:4,自引:0,他引:4  
万兰凤  冷祥贵 《梅山科技》2005,(1):27-29,32
介绍了梅钢铌钛微合金化汽车大梁用热轧板带BM510L的产品设计、冶炼工艺、轧制工艺、成品的实物质量及用户的使用情况。表明梅山生产的汽车大梁用热轧板带BM510L性能稳定,完全能够满足汽车行业的要求。  相似文献   

10.
为顺应集装箱减重的发展趋势,珠钢在EAFCSP流程上开发了基于Ti微合金化的高强度耐大气腐蚀钢板生产技术,屈服强度最高达到570MPa。系统地研究了试验钢的组织和性能,并分析了组织与性能的关系。结果表明,当Ti含量小于0.045%时,钢板屈服强度的提高来主要自于晶粒细化,而当Ti含量大于0.045%后,钢板强度的进一步提高主要来自于Ti(C、N)沉淀强化。  相似文献   

11.
Ti微合金化高强耐候钢的成分设计研究   总被引:3,自引:0,他引:3  
基于EAF—LF—CSP流程,以集装箱板的成分为基础,研究了Ti的加入范围,设计出高强耐候钢中的化学成分,开发出屈服强度为450~700MPa的高强钢。  相似文献   

12.
试验超高强耐候钢(/%:0.062~0.065C、0.29~0.30Si、1.23~1.27Mn、0.49~0.52Cr、0.19~0.20Ni、0.29~0.31Cu、0~0.20Mo、0.035~0.060Nb)由50kg真空感应炉熔炼,在实验室锻成60mm×60 mm方坯并热轧成4 mm板材,末道次温度880℃,水冷至600℃炉冷。用光学显微镜、扫描电镜、透射电镜和万能拉伸试验机研究了Nb和Nb-Mo微合金化对该钢组织和力学性能的影响。试验结果表明,0.060%Nb钢较0.035%Nb钢晶粒更细,强度提高~70 MPa,但伸长率相同;与未加Mo的0.035%Nb和0.060%Nb钢相比,0.035%Nb-O.20%Mo钢M/A相明显增加,并出现大量贝氏体组织,抗拉强度增加,但屈强比和伸长率降低。  相似文献   

13.
利用Gleeble 3500热模拟试验机研究了铌-钛微合金化试验钢在变形与未变形条件下的连续冷却相变规律。研究结果表明:试验钢在2~50℃/s的较大冷速范围内均可获得贝氏体组织,且随着冷却速度的增加,组织中粒状贝氏体的量下降,板条贝氏体的量增加;同时变形促进相变,有利于奥氏体中新相的形成。用热膨胀法建立了试验钢静态与动态条件下的连续冷却转变(CCT)曲线。  相似文献   

14.
在薄板坯连铸连轧流程上,经过对Ti微合金化技术研究,有效地解决了Ti微合金化性能波动大的问题,开发出屈服强度450~700 MPa高强耐候钢.通过对试制钢的组织性能和应用研究,表明该产品具有良好的通板性能,成形性能和焊接性能,满足集装箱和汽车制造行业要求,具有广阔市场前景.  相似文献   

15.
采用高频真空感应炉在1 550℃的Ar气氛中冶炼不同钛含量的钛、铌微合金化钢并对其进行热处理。分析了钛加入量对钢的成分、组织结构、钢中典型夹杂物及宏观力学性能的影响。研究结果表明:采用Al脱氧后的钛、铌微合金化钢氧含量降低到0.002 0%左右,合金元素的利用率超过80%。钢中的夹杂物主要有球形或近似球形的Al2O3、SiO2、TiOx及其复合夹杂。(Ti,Nb)(C,N)、NbC、TiC夹杂以氧化物夹杂为核心析出。随着钛合金加入量的增加,钢样中的部分夹杂物形貌由球形发展成长方形。经共聚焦激光扫描高温显微镜热处理过的钢样中析出较多细小的(Ti,Nb)(C,N)夹杂物。随着钛含量的增加,热处理后的钢中小于1μm夹杂物数量急剧增加,尺寸大于1μm的夹杂物的数量呈现减少的趋势。高温在线金相组织分析表明:钢中钛加入量增加,高温奥氏体晶粒变小,钢的组织细化,从而钢的宏观硬度增高。  相似文献   

16.
鞍钢钒、钛、铌微合金钢的应用与开发   总被引:6,自引:0,他引:6  
对钒、钛、铌在钢中的微合金化作用作了全面阐述,并介绍了鞍钢在开发钒、钛、铌微合金钢方面所进行的工作及前景。  相似文献   

17.
杨跃标  邓深  樊雷  赵征志  袁勤攀  罗静 《钢铁》2019,54(10):72-79
 为了掌握钛微合金化高强钢的组织性能、第二相粒子特性和析出规律以及强化机制,采用光学显微镜、扫描电镜、透射电镜、拉伸试验机等设备并结合热力学计算,对高强度汽车车厢板进行了系统研究。研究结果表明,试验钢的显微组织类型主要为多边形铁素体+针状铁素体+少量索氏体,平均有效晶粒尺寸约为3.5 μm。钢中存在大量的球形TiC和少量的不规则形状Ti4C2S2及方形TiN析出物,析出顺序为TiN→Ti4C2S2→TiC。第二相析出物以TiC的沉淀强化效果最为显著,TiN和Ti4C2S2的沉淀强化效果十分微弱。试验钢中所有强化方式对试验钢的强度贡献大小顺序为细晶强化>沉淀强化>位错强化>固溶强化>晶格点阵强化,其中细晶强化和沉淀强化的强化效果最为显著,对屈服强度的贡献超过50%。  相似文献   

18.
采用升降法对CSP工艺生产的2mm厚Ti微合金化高强钢的疲劳性能进行研究.结果发现:高强钢的抗拉强度为830 MPa;疲劳强度为685 MPa,约为抗拉强度的0.83倍;伸长率为18.8%.绘制了高强钢的S-N曲线,并拟合出疲劳寿命与最大应力的关系.通过扫描电镜对疲劳断裂机理进行了分析.宏观疲劳断口可见明显的裂纹源区、扩展区和瞬断区形貌.疲劳裂纹起始于带钢表面微裂纹;疲劳扩展区存在微观疲劳辉纹、二次裂纹和宏观疲劳贝纹线;瞬断区出现撕裂棱,兼有韧窝存在.  相似文献   

19.
介绍了鞍钢2150ASP牛产线采用Nb微合金化技术开发高强度耐候钢的过程,并与传统工艺进行了比较.该高强耐候钢带力学性能及冷弯、焊接性能均满足标准要求和用户协议要求,使用情况良好.  相似文献   

20.
王鑫 《包钢科技》2023,(2):55-59
对不同钛含量的700L汽车大梁钢母材及熔化极性气体保护焊(MAG)焊接后试样的显微组织、力学性能进行对比研究。结果表明:钛含量为0.11%时,试验钢显微组织中铁素体晶粒为3~5μm,还有少量的变形带,屈服强度为678 MPa,抗拉强度为760 MPa,伸长率为17.0%;钛含量为0.07%时,显微组织中铁素体晶粒为4~8μm,还有少量的珠光体颗粒,屈服强度为658 MPa,抗拉强度为734 MPa,伸长率为24.0%;MAG焊接后,两种试验钢的强度升高10 MPa左右,但伸长率分别降低1.0、3.0个百分点,背弯180°(d=2a)性能合格;随着钛含量的增加,试验钢的热影响区显微组织得到细化,低碳马氏体含量有所增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号