首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
水平循环荷载下高桩基础受力性状模型试验研究   总被引:3,自引:0,他引:3  
近海高耸结构基础承受风,浪,波流等水平循环荷载作用,受力变形性状十分复杂.在饱和粉土地基中完成了单桩和群桩的水平循环加载试验,揭示了单桩和群桩响应随循环加载的变化规律.试验结果表明循环加载使桩周土体产生累积塑性变形,桩-土体系水平刚度随循环次数增加不断下降;先期循环加载对后期加载的刚度有着明显影响;群桩中各基桩分担的水平荷载比例随循环加载发生重分配,前排桩的作用得到更多发挥;荷载循环效应对群桩的影响大于单桩.基于p-y曲线法引入循环效应系数以考虑荷载循环的影响,并将该方法与其它文献方法和试验结果作了对比验证.  相似文献   

2.
桩土界面剪切行为对静压敞口预应力高强混凝土(PHC)管桩沉贯性状及长期承载力特性具有至关重要的作用。通过成层土地基中桩身预埋光纤光栅(FBG)传感器的静压桩足尺试验,分别对敞口PHC管桩贯入及静载荷试验中的桩土界面剪切行为进行研究。结果表明:在贯入阶段,桩身轴力及侧摩阻力沿桩的深度方向逐渐传递,传力幅值与桩周土体性状密切相关,土层界面处轴力传递效率依次为98.2%、92.2%、96.3%、83.8%、80.5%。随着压桩循环次数的增加,同一深度土层摩阻力呈逐渐减小趋势。经历5个压桩循环后,深度6 m处的砂质粉土层摩阻力减小幅度约为46.25%,深度10m处的粉质黏土层经历3个压桩循环后摩阻力减小幅度约为12.1%;载荷试验过程中,桩侧摩阻力随着桩顶荷载施加自上而下逐步发挥。摩阻力完全发挥所需的桩土相对位移,粉质黏土层的最大,约为6.96~7.46mm,淤泥质黏土层的次之,约为6.05mm,砂质粉土层的最小,约为4.23mm;与原状土相比,重塑区土体含水量、孔隙比参数指标降低,重度、黏聚力及内摩擦角增大。桩周重塑区土体物理力学指标变化是贯入及载荷试验阶段桩土界面剪切行为不同的重要原因。  相似文献   

3.
 结合透明土、粒子图像测速(PIV)和近景摄影测量3种技术,研究塑料套管混凝土桩(TC桩)的挤土效应,并对周围土体的变形规律进行探讨,且与传统静压桩打设引起的土体变形进行对比。试验结果表明:圆锥桩尖引起的最大变形量相比平底桩尖的降低了40%;而在平底桩尖TC桩的成桩过程中,影响区域扩展到了远离桩体中心线11倍桩径处,而对于圆锥桩尖,则为6倍桩径;沉管上拔引起的土体移动主要发生在上拔前期,对于圆锥桩尖TC桩,其沉管上拔过程引起的最大位移量和影响区域分别约为平底桩尖的57%和33%,然而,在TC桩成桩过程中,沉管打设是引起土体变形的主导因素,沉管上拔引起的土体恢复变形较小;在与TC桩沉管直径相同条件下,传统静压桩打设引起的土体变形量与TC桩的相一致,然而其影响区域略小。  相似文献   

4.
张世民  俞峰 《工业建筑》2007,37(5):61-64,72
通过对某砂性土场地内一组H型钢长桩的原位试验,分别以2倍和2.5倍的单桩承载力设计值进行压桩,同时,以一根类似土层中的锤击桩作为对比试验,并沿桩身安装频振型应变计考察桩在载荷试验过程中的荷载传递性状。试验结果显示:静压桩的荷载传递性状表现为端承摩擦桩,而锤击桩的荷载传递性状则表现为摩擦端承桩。以最终贯入度收桩的锤击桩,其桩端深度大于以超载预压法收桩的静压桩。静压桩的极限承载力与其曾经历的最大压桩力紧密关联。当静压桩的最大压桩力达2.5倍的单桩承载力设计值时,虽然其桩端较锤击桩而言置于较浅并较软的土层上,但极限承载力并不小于锤击桩。原因在于,较高的压桩力可能降低了桩在高荷载条件下的蠕变沉降,从而增加了桩的极限承载能力。  相似文献   

5.
抗拔桩侧摩阻力发挥规律的探讨   总被引:1,自引:0,他引:1  
丁佩民  黄堂松  肖志斌 《建筑科学》2003,19(6):46-48,62
应用有效应力法概念,在沉桩施工、施工后至加荷前的歇置,承受荷载(至破坏)全过程的框架中,对桩基、特别是抗拔桩的侧摩阻力的影响因素进行分析,阐述抗拔桩与抗压桩桩侧土体应力状态变化的相同与不同之处,以及造成两者侧摩阻力差异的原因。  相似文献   

6.
Pile foundations are used to support both vertical and horizontal loads in many geotechnical projects, such as the coastal and offshore engineering. The responses of piles under vertical-horizontal combined loading are separately analyzed and then superposed in current design practice. This simplified analysis approach does not take the coupling effect of the combined loads into consideration. The research on this topic is limited and the results reported to date are inconclusive with regard to the influence of vertical loads on the horizontal response of piles. In this paper, a series of centrifuge model tests under different vertical-horizontal combined loading conditions was performed to investigate the influence rules and mechanism of the combined loads on the response of piles in sand. The vertical load is shown to densify the soil near the pile and therefore decrease the horizontal displacement and bending moment of the pile: this is termed the “soil densification effect”. The vertical load induces an additional bending moment of the pile due to the lateral deformation of the pile: this is termed the “P-Δ effect”. The soil densification effect plays a dominant role in the early horizontal loading while the P-Δ effect is strengthened as the horizontal loads increases. These compound effect of these two seemingly opposing effects is a decrease in the bending moment of the pile decrease first then increase as the horizontal load increases. Additional settlement of the pile is caused by horizontal loading and isa positively correlated with the pre-vertical loads.  相似文献   

7.
尚华 《山西建筑》2011,37(8):54-54
针对填方土体会逐渐产生自重固结沉降的现象进行了分析,探讨了填土负摩阻力对嵌岩桩竖向承载力的影响,并根据JG J 94-2008建筑桩基技术规范,指出验算单桩承载力时应考虑桩周土的负摩阻力引起的下拉荷载。  相似文献   

8.
静压沉桩过程中沉桩阻力计算是桩机选型的关键,而目前对沉桩阻力计算方法尚未统一,且沉桩过程中引起的桩周侧压应力分布规律尚不明确。为此,通过室内模型试验模拟砂土地基中静压沉桩,研究沉桩速率和桩长对静压沉桩过程中沉桩阻力、沉桩端阻力、桩周侧压应力和桩体极限承载力的影响。结果表明:沉桩阻力、沉桩端阻力、桩周侧压应力和桩体极限承载力主要与桩长有关,沉桩端阻力与沉桩阻力之比随着沉桩深度增加而减小,但在沉桩深度为12倍桩径位置的沉桩端阻力占沉桩阻力的比例仍高达75%;桩周侧压应力随着埋深增加逐渐趋近于被动土压力,其主要与沉桩对土体挤密作用有关,且增加桩长和降低沉桩速率均可改善沉桩挤密作用;桩周侧压应力存在显著的“退化”现象,并与沉桩过程和桩体回弹有关。此外,基于太沙基极限承载力理论建立了沉桩阻力拟合计算式,并结合朗肯被动土压力理论,提出了桩周侧压应力计算的朗肯被动土压力修正计算公式,可用于静压桩沉桩完成后的桩周侧压应力计算。  相似文献   

9.
静压沉桩过程中沉桩阻力计算是桩机选型的关键,而目前对沉桩阻力计算方法尚未统一,且沉桩过程中引起的桩周侧压应力分布规律尚不明确。为此,通过室内模型试验模拟砂土地基中静压沉桩,研究沉桩速率和桩长对静压沉桩过程中沉桩阻力、沉桩端阻力、桩周侧压应力和桩体极限承载力的影响。结果表明:沉桩阻力、沉桩端阻力、桩周侧压应力和桩体极限承载力主要与桩长有关,沉桩端阻力与沉桩阻力之比随着沉桩深度增加而减小,但在沉桩深度为12倍桩径位置的沉桩端阻力占沉桩阻力的比例仍高达75%;桩周侧压应力随着埋深增加逐渐趋近于被动土压力,其主要与沉桩对土体挤密作用有关,且增加桩长和降低沉桩速率均可改善沉桩挤密作用;桩周侧压应力存在显著的“退化”现象,并与沉桩过程和桩体回弹有关。此外,基于太沙基极限承载力理论建立了沉桩阻力拟合计算式,并结合朗肯被动土压力理论,提出了桩周侧压应力计算的朗肯被动土压力修正计算公式,可用于静压桩沉桩完成后的桩周侧压应力计算。  相似文献   

10.
《Soils and Foundations》2022,62(3):101150
The circular helicoid pile (CH pile) is a new type of special-shaped pile that has been developed in Japan and South Korea in the past decade and has been widely used in the fields of construction, transportation, natural energy and agriculture due to its excellent compressive and pullout bearing performances. Consequently, this new type of pile has good engineering application prospects. However, as an innovative engineering structure, the CH pile is not widely known by geotechnical engineers worldwide. The geometric structure of the CH pile is similar to a circular helicoid in differential geometry. Therefore, the pile-soil interaction problem cannot be reduced to a plane strain problem or an axisymmetric problem in theoretical research. In view of this, dry silica sand was used as the model foundation in this study, and a model test device and method that can effectively reflect the installation process and loading-bearing service state of CH piles were developed. Under different installation methods, pile structures and foundation soil conditions, 90 model tests were carried out to evaluate the engineering performances of CH piles during the whole process of installation and bearing, including the installation performances during the installation process, the compressive bearing performances under axial compressive loading and the pullout bearing performances under axial pullout loading. Compared with steel sheet piles and steel pipe piles, CH piles have better engineering performance and more economic benefits from the aspects of installation, construction, recycling, timeliness of engineering application, and the relative relationship between bearing capacity and pile mass.  相似文献   

11.
In the present study, we performed installation and pull-out loading tests on screwed piles in sand deposits using a calibration chamber. These tests focused on how the installation method influenced the performance of the piles. The results revealed that the load-displacement relationship strongly depended on the installation method, but that the second-limit uplift resistance was almost unaffected. Next, we observed the movement of the soil near the pile after both the installation and pull-out loading tests. Shear failure of the soil, which occurs in a cylindrical region in the periphery through which the wing plate of the pile passes, regardless of how the screwed pile is installed, was found to be one of the determinants of the pulling resistance. Finally, we evaluated the pulling resistance of the screwed pile based on these soil observations and an analysis of the loading test results. We found that the pulling resistance of the wing plate could be determined based on the change in earth pressure near the pile due to installation and pull-out loading of the pile.  相似文献   

12.
《Soils and Foundations》2022,62(3):101141
Centrifuge modeling offers a viable tool for research in the soil-pile interaction, but this technique has not been used for helical piles in cohesive soils. A centrifuge model test program of helical piles in cohesive soils was carried out to investigate the axial soil-pile interaction and pile failure mechanism. Helical piles were installed while the centrifuge was spinning, which enabled the determination and interpretation of installation torque and pore pressure response of the soil. An analytical model for calculating the installation torque of helical piles screwed into cohesive soils was proposed and verified by test results. The pore pressure response to pile installation was monitored near two piles at two depths. Comparing the measured dissipation curves with the analytical curves for driven piles suggested that the excess pore pressure was primarily induced by the helical pile shaft. The model piles were axially loaded under 20 g condition. The present research may be considered as the first centrifuge test program that measured the axial load distribution along helical piles. The shaft internal loads were recorded using an innovative strain gauging method. The results show that the axial failure modes of helical piles depend on the strength of soil and inter-helix spacing. In general, it may be easier for a stiffer clay to form an inter-helix soil cylinder during axial pile movement.  相似文献   

13.
本文分析了桩的荷载传递机理及桩侧极限摩阻力沿桩身的分布模式 ,并用荷载传递函数解析法定性分析了桩长和桩轴向抗压刚度对粘土层中桩的极限承载力的发挥的影响。  相似文献   

14.
A new kind of Deep Cement Mixing (DCM) pile called Stiffened Deep Mixing Pile (SDCM) is introduced to mitigate the low flexural strength and unexpected failures of DCM piles. A jet grouting method with a jet pressure of 22 MPa, was utilized in the installation of DCM piles. The SDCM pile consists of a DCM pile with a precast reinforced concrete core pile inserted at its center. Pile and embankment load tests were conducted, and then the results of the field load tests were simulated by a 3D finite element method (FEM) to back-analyze and confirm the related design parameters. These parameters were then used further in numerical experiments. The field test results showed that the settlements and lateral movements of the SDCM pile using a prestressed concrete core pile with area ratio (Acore/ADCM) of 0.17 and a length ratio of 0.85 was less than those of the DCM pile by 40% and 60%, respectively. Moreover, the SDCM pile foundation increased the bearing capacity by as much as 2.2 times. The average lateral pile capacity of the SDCM piles was 15 times higher than the DCM piles. A strength reduction factor of 0.40 was obtained at the concrete core and the DCM interface from the full scale pullout test. The behavior of both the DCM and SDCM piles was confirmed from the subsequent 3D FEM simulations. From the 3D FEM simulations, the length of the concrete core pile had more influence on the settlements of the SDCM pile than its cross-sectional area. However, both the length and cross-sectional area of concrete core pile affected the lateral resistance of the SDCM pile.  相似文献   

15.
《Soils and Foundations》2022,62(1):101094
When a pile is installed into saturated clay ground, the “setup” effect may occur due to ground consolidation, which changes pile performance. Although this phenomenon has been observed both in the field and laboratory, its numerical simulation is still challenging. In this work, pile installation effects on the behaviors of jacked-in piles were investigated through three simulation techniques by a three-dimensional finite element analysis program, PLAXIS 3D. A constitutive model called the soft soil creep model was used to describe the soil behavior based on soil parameters obtained from laboratory tests. The behaviors of single piles were first investigated with or without the consolidation process after pile installation to evaluate the pile setup effect. Then, a pile group comprising 4 piles was analyzed using the consolidation process to verify the applicability of the three simulation techniques. The calculated results were compared with the corresponding experimental results. The calculated results using three techniques generally agreed well with the experimental results in terms of initial stiffness and pile shaft resistance. Both the measured and calculated results indicate that ground consolidation caused by pile installation significantly increases the pile bearing capacity and especially, the pile shaft resistance. Therefore, the pile setup effect can be reasonably simulated by the three proposed techniques.  相似文献   

16.
《Soils and Foundations》2023,63(2):101277
In this study, the frost jacking characteristics of steel pipe screw piles for photovoltaic support foundations in high-latitude and low-altitude regions are studied via in situ tests and numerical simulations. The elevation changes in 7 in situ test piles during a frost heave cycle are monitored, and the observation results are used to verify the accuracy of the finite element model. The frost jacking with different helix spacings is studied, and the anti-frost jacking abilities of piles coated with different thicknesses of asphalt are analysed. The results show that the annual frost jacking values of the piles are approximately 6.08 ~ 7.73 mm in the helix spacing range of 500 ~ 700 mm. The value of 675 mm used in the actual project is the smallest, and the cumulative jacking during the service life is approximately 144.68 mm. The asphalt coating on the pile body can reduce the interaction between the frozen soil and the pile. Asphalt coatings larger than 10 mm basically eliminate the frost jacking of the pile. This research provides reliable design suggestions for helix spacing design and anti-frost jacking measures of screw piles in similar projects.  相似文献   

17.
《Soils and Foundations》2022,62(5):101212
Pile groups are traditionally designed with similar piles in length, diameter, and property. However dissimilar piles may occur in the cases of foundation reuse and economical building design. This paper develops a fictitious pile method for the interaction factors between two dissimilar piles in a pile group that have different dimensions and properties. The effects of different pile lengths/properties on the horizontal load distribution, group efficiency factor and group reduction factor are studied here by using the fictitious pile method. Based on the principle of superposition and the concept of interaction factor, the proposed approach avoids the full analysis on pile groups and thus significantly improves the calculation efficiency. The horizontal load distributions for the fixed-head pile group with dissimilar piles by the proposed method match well with the results by the finite element method. The parametric study shows that, for stiffer pile group, the corner pile length is an important parameter affecting the fixed-head pile group behavior under horizontal loading.  相似文献   

18.
贯入速率对静压敞口混凝土管桩沉贯及承载力特性具有重要影响。通过砂土地基中静压敞口混凝土管桩室内模型试验,分别对不同贯入速率下模型桩土塞特性、压桩力及极限承载力变化进行研究。结果表明,模型桩贯入速率由2.0mm/min增大至3.0、4.0mm/min时,土塞高度分别降低了12.8%、27.2%,土塞率降低幅值分别为12.9%、27.2%。不同贯入速率沉桩结束后,模型桩土塞增长率分别为35.4%、23.6%及19.8%;相比于4.0mm/min贯入速率,贯入速率2.0mm/min及3.0mm/min下模型桩最终压桩力增长幅度分别为92.6%及 25.1%,极限承载力增长幅值分别为77.8%及4.5%,这主要是由于贯入过程中土塞特性差异导致的内壁摩阻力不同所引起的。研究成果可为砂土地基中敞口混凝土管桩沉桩性状及极限承载力研究提供理论依据。  相似文献   

19.
新建地铁隧道会对临近桩基础造成影响,而通常高层建筑是在地下室之下设置桩基础。受地下室基坑开挖影响的桩基础,其工作时的受力状态与桩顶直接加载工况不同,对隧道施工的响应也不同。文章基于弹性力学Mindlin解和显式算法,并引入了亚塑性桩-土接触面本构,建立考虑基坑开挖效应的桩在正常工作时的内力与摩阻力分布。进一步基于Loganathan-Poulos解,引入隧道开挖位移场,研究隧道开挖对工程桩的影响。结果表明,考虑基坑开挖影响时,桩工作荷载状态下侧穿和下穿隧道引起的桩身位移,明显大于不考虑基坑开挖影响时结果;摩阻力分布与不考虑基坑开挖条件下有明显的不同。  相似文献   

20.
变刚度调平设计中桩基承载性状研究   总被引:2,自引:0,他引:2  
王涛 《岩土工程学报》2015,37(4):641-649
桩基变刚度调平设计的框筒结构体系大比尺模型试验和实际工程桩顶反力测试结果均显示工作荷载作用下,核心筒不同区位桩顶反力随荷载水平的提高而增加,核心筒外围框架柱下桩顶反力也与核心筒下桩顶反力一样趋于均匀。可见,变刚度调平设计可调整反力分布,改善筏板的受力性状。模型试验中核心筒桩顶反力提高的比率是角桩最大、边桩次之、中心桩最小,角桩、边桩、中心桩反力与平均值的比值为:1.15∶1.02∶0.83。工程实测中外框架角桩下桩反力外框架边柱下桩反力核心筒下桩反力。这主要由于群桩效应引起的桩基竖向支撑刚度弱化,外框架柱下角桩处桩数少,群桩效应影响较弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号