首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究全波段正常色散光子晶体光纤中高相干度超连续谱的产生及其脉冲压缩,采用分步傅里叶法数值模拟了超短光脉冲在全波段正常色散光子晶体光纤中的非线性传输和超连续谱的产生;利用1阶相干因子分析了抽运波长和入射峰值功率对超连续谱相干特性的影响。结果表明,色散效应越弱,越有利于高相干度超连续谱的产生;在色散效应较小处抽运时,获得了带宽为587nm、平坦度小于7dB的高相干度的超连续谱;超连续谱的相干性越高,越有利于脉冲压缩,采用光栅对压缩器对高相干度超连续谱脉冲进行压缩,获得了8.4fs、压缩质量因子为88.88%的超短光脉冲。因此,抑止色散效应,利用自相位调制可获得高相干度的超连续谱及高质量的脉冲压缩。  相似文献   

2.
报道了采用被动锁模光纤激光器抽运特种光纤产生超连续(SC)谱,对在4.28 km色散平坦光纤(DFF),4.28 km DFF+420 m高非线性光纤(HNLF)和420 m HNLF+4.28 km DFF中产生的超连续谱进行比较和分析.平均抽运功率为30 mw时,在420 m HNLF+4.28 km DFF组合中,实现了长波长一侧的光谱234 nm范围内不平坦度小于±2 dB,短波长一侧的光谱195 nm范围内不平坦度小于±2 dB.结果表明DFF与HNLF的组合使用要比单独使用DFF获得的超连续谱谱宽更宽,平坦性更好;DFF与HNLF的连接顺序不同,所产生的超连续谱也不同;420 m HNLF+4.28 km DFF这种组合更容易获得平坦的超连续谱,短波长一侧的功率显著增高.  相似文献   

3.
高非线性光子晶体光纤中超连续谱产生的特性研究   总被引:1,自引:1,他引:0  
利用数值方法求解广义非线性薛定谔方程,数值模拟了光脉冲在高非线性光子晶体光纤正常色散区超连续谱产生的演化,研究和分析了脉冲参数如峰值功率,脉冲宽度及初始频率啁啾对超连续谱形成的影响.结果表明,当脉冲峰值功率一定时,随着传输距离增大,超连续谱随之愈宽,平坦度愈好;随着脉冲峰值功率逐渐增大,超连续谱随之更宽,平坦度有所劣化.相反,脉冲宽度逐渐增大,超连续谱展宽范围减小,其平坦度也逐渐劣化;具有适当的正负啁啾脉冲,在高非线性光子晶体光纤传输中获得宽而平坦超连续谱.  相似文献   

4.
色散平坦渐减光纤产生平坦超连续谱的数值研究   总被引:4,自引:0,他引:4  
通过数值计算,对色散平坦渐减光纤(DFDF)产生平坦超连续谱(SC)进行了研究。结果表明,该光纤中抽运脉冲峰值功率对超连续谱的形成有着重要的影响,超连续谱的产生存在阈值功率,抽运脉冲峰值功率由阈值逐步增大,超连续谱随之愈宽,平坦度愈好,但增大到一定值时,超连续谱的平坦度会开始劣化,综合考虑各因素找到了产生平坦超连续谱的最佳功率;四阶和五阶群速度色散(GVD)是该种光纤产生平坦超连续谱的决定因素,三阶及五阶以上群速度色散的作用可以忽略;进一步研究发现,超连续谱频谱展宽的机理主要来自脉冲的自相位调制效应,自变陡、受激拉曼散射等高阶非线性效应对平坦超连续谱的产生没有显著影响,在计算的时候完全可以忽略。  相似文献   

5.
飞秒脉冲在高非线性光纤中产生超连续谱的特性研究   总被引:2,自引:2,他引:0  
采用分步傅里叶方法,对飞秒脉冲在高非线性光纤中超连续谱的形成过程进行了研究,分析了脉冲峰值功率,脉冲宽度及初始频率啁啾对超连续谱特性的影响.结果表明,脉冲峰值功率、脉冲宽度以及初始啁啾对超连续谱的形成有着极其重要的影响;当脉冲峰值功率逐渐增大,超连续谱随之愈宽(-20dB处谱宽从170nm展宽到400nm以上),平坦度愈好.与之相反,脉冲宽度逐渐增大,超连续谱展宽范围减小,其平坦度也逐渐劣化;初始负啁啾有利于脉冲SC谱的展宽而正啁啾使脉冲SC谱的展宽受到一定抑制.进一步研究表明,适当的峰值功率超短啁啾脉冲在高非线性光纤传输时,得到没有泵浦成份残余的超宽且平坦超连续谱.  相似文献   

6.
基于微结构光纤的10 GHz超过1100信道的平坦超连续谱光源   总被引:1,自引:0,他引:1  
报道了一种基于微结构光纤的宽带、平坦超连续谱(SC)光源。利用锁模半导体激光器产生的1.6ps,重复率为10GHz的光脉冲,通过一段80m的色散平坦高非线性微结构光纤(HNL-MF),在1.55μm波长区域产生了谱宽超过100nm的平坦超连续谱。实验中采用的微结构光纤的非线性系数约为11W-1·km-1。光纤具有小的正常色散和平坦的色散特性,在1550nm波长处,光纤的色散值约为-0.58ps·nm-1·km-1,而在1500~1650nm波长范围内,光纤的色散值变化小于1.5ps·nm-1·km-1。实验中获得的宽带、平坦超连续谱在1503~1593nm宽达90nm的波长范围内,具有±2.5dB的平坦度。该宽带、平坦超连续谱能同时提供波长间隔为10GHz,超过1100路的多波长载波信道。通过对光谱滤波,获得了速率为10Gbit/s的多波长脉冲序列。这样的超连续谱光源在波分复用(WDM)光通信系统、光波长变换等方面都有重要的应用。  相似文献   

7.
高功率超短脉冲串需求广泛,但是有限的平均功率和能量的低利用率限制了超短脉冲串的应用。基于不同于锁模机制的非线性孤子效应,利用振幅调制连续光抽运,数值模拟了光纤中高功率超短脉冲串的稳定产生。分别研究各输入参数如抽运功率、调制深度、调制频率以及光纤参数包括非线性系数、群速度色散系数等对高功率超短脉冲串输出特性的影响规律。为了综合考量各参数对抽运效率的影响,以利于光纤参数和调制参数的选择,引入了归一化调制频率。研究结果表明:选择具有小非线性及较大群速度色散的光纤,适当增加调制频率和调制深度,都可以在保证高平均功率输出的同时获得相对高的抽运效率,而较小抽运功率则有利于能量提取。  相似文献   

8.
为得到脉冲宽度为12ps、中心波长为1064nm的高功率超连续谱,提出了一种全光纤结构的超连续谱光源。将该光源作为抽运源,其输出功率在芯径为10mm的掺镱光纤中被放大至189 W。利用窄带滤波器、级间隔离器对脉冲信号进行放大,将放大后的脉冲信号注入长度为0.5 m的光子晶体光纤,产生了光谱范围为460~1700nm、输出功率为102.8 W的超连续谱。由于存在量子亏损和光谱传输损耗,当抽运功率从1.5 W提高至189 W时,超连续谱光-光斜率效率从90%降低至20%。  相似文献   

9.
提出了利用倍频效应得到双波长抽运三零色散光子晶体光纤(PCF),产生近红外、中红外波段超连续谱。设计三零色散光子晶体光纤结构,采用分步傅里叶算法数值求解非线性薛定谔方程,模拟双波长抽运三零色散光子晶体光纤产生超连续谱的演化过程,分析了不同光纤长度和脉冲峰值功率对产生的超连续谱的影响。结果表明:当抽运激光脉冲中心波长分别为1μm和2μm、脉宽为100 fs、重复频率为200 k Hz,传输距离为10 cm、脉冲峰值功率为10 k W时,得到了谱宽为690~3150 nm的超连续谱,包含了近红外、中红外波段,光谱具有较好的连续性和平坦度。  相似文献   

10.
报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由1.55μm纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模ZBLAN光纤组成。首先利用单模光纤将1.55μm纳秒脉冲激光频移至2.0μm波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用ZBLAN光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为3.95W时,ZBLAN光纤产生了2.2W的中红外超连续谱激光输出,相应的光谱范围为1.9~3.75μm,10dB光谱带宽大于1600nm。此外,通过增加掺铥光纤放大器的平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模ZBLAN光纤的平均功率为21W时,中红外超连续谱的平均输出功率达到了16.2W,相应的光谱范围为1.9~3.5μm。  相似文献   

11.
采用数值模拟研究了飞秒脉冲在悬吊芯As_2S_3微结构光纤中传输时,抽运波长对中红外超连续谱产生的影响。通过分步傅里叶算法数值求解广义非线性薛定谔方程,对不同抽运波长的飞秒脉冲在悬吊芯As_2S_3微结构光纤中传输时的传输特性及演化过程进行分析。模拟结果表明,当抽运波长为2300nm时,处于光纤的反常色散区且近零色散波长,可获得宽带且平坦的中红外超连续谱,光谱范围覆盖1.2~7μm;当抽运波长为2500nm时,处于光纤的反常色散区且远离零色散波长,可获得超宽带中红外超连续谱,光谱范围覆盖1.2~7.5μm,但其平坦度略差。该结果对产生中红外超连续谱时选择合适的激光抽运波长,进而优化中红外超连续谱具有重要的参考价值。  相似文献   

12.
张嵩  姜曼  李灿  粟荣涛  周朴  姜宗福 《红外与激光工程》2021,50(11):20210668-1-20210668-2
超连续谱光源因同时具有普通光源(自发辐射光)的宽光谱特性和单色激光的高空间相干性、 高亮度等特征被广泛应用于光谱学、生物医学、环境科学以及光电对抗等领域。在多种非线性效应(调制不稳定性、自相位调制、交叉相位调制、四波混频、孤子自频移和受激拉曼散射等)和色散的综合影响下,入射到非线性介质中的激光光谱会得到极大展宽。根据这一机理,通常利用脉冲激光注入光纤放大器或者光子晶体光纤产生超连续谱。但是,光纤放大器产生超连续谱的功率阈值较高且输出光谱平坦度相对较差;而光子晶体光纤的切割和熔接也给后者的实现带来了挑战。  相似文献   

13.
提出了一种基于高非线性氟化镁光子晶体光纤产生紫外超连续光源的方法。采用分步傅里叶法求解光纤的非线性薛定谔方程,基于光子晶体光纤数值模拟了扩展到紫外波段的超连续谱的产生;通过分析光纤结构参量与泵浦光源参数对紫外超连续谱产生的影响,得出了光纤长度、色散参量以及泵浦脉冲峰值功率、初始脉冲宽度对超连续谱光谱宽度的影响规律。研究发现:当光子晶体光纤长度为8 cm、脉冲中心波长为450 nm、峰值功率为3.1 kW、初始脉冲宽度为40 fs时,可获得展宽至紫外的超连续谱,范围为279.6~769.0 nm。  相似文献   

14.
优化设计了高功率、高效率掺铒光纤超荧光光源的参数。采用商用掺铒光纤,针对双程后向结构,首先仿真了光源输出功率和带宽随掺铒光纤长度的变化,并用对等实验验证了模拟结果,初步确定掺铒光纤长度的优化范围;理论研究了反射镜反射率对光源性能的影响,计算出最佳反射率并模拟了该反射率下光源的输出光谱;实验研究了抽运功率对光源平均波长的影响,确定了优化的抽运功率范围,并进一步确定了掺铒光纤的优化长度。实验选用110mW抽运功率,13.74m掺铒光纤,获得了输出功率为46.9mW的高功率光纤光源,其抽运转换效率可达42.6%,且光源保持了约34.54nm的宽带宽。  相似文献   

15.
中红外超连续谱(SC)光源在工业过程控制、环境监测、生物医学等众多领域有着广泛的应用,是目前国内外的研究热点。在中红外SC产生的抽运源上,随着2μm波段脉冲激光的发展,用长波长脉冲源抽运软玻璃光纤产生超连续谱是中红外SC光源发展的一个新尝试。目前,2μm脉冲激光可经由掺铥光纤放大器实现高功率输出,经由2μm波段的  相似文献   

16.
江丽  宋锐  何九如  侯静 《中国激光》2022,(9):205-206
<正>超连续谱激光具有宽光谱和高亮度的特性,被广泛应用于光学相干断层扫描、生物光学、光谱检测等领域。目前,产生可见光至近红外波段超连续谱的常用方案是利用脉冲光纤激光器泵浦光子晶体光纤。利用该方案, 2018年,中国工程物理研究院报道了563W的高功率超连续谱激光,输出光谱范围为665~1750 nm。在该方案中,高功率皮秒脉冲光纤激光器输出尾纤(纤芯直径约为20μm)与光子晶体光纤(纤芯直径约为5μm)之间较大的模场失配以及光子晶体光纤较小的纤芯直径是制约输出超连续谱功率提升的主要原因。  相似文献   

17.
用实验和数值模拟两种方法研究了在反常色散区抽运光子品体光纤(PCF)中飞秒激光脉冲的传输特性和超连续谱的产生机理,给出了抽运脉冲在不同功率情况下输出光谱展宽并形成超连续谱的实际测镀及理论模拟结果.研究表明:在反常色散区抽运时,光谱展宽的初期以自相位调制为主,随后根据抽运功率的不同,孤子自频移、高阶光孤子的裂变和叫波混频效应会逐渐增强,进而成为光谱展宽的主要原因;初始激光脉冲的峰值功率和脉冲初始啁啾对光子晶体光纤反常色散区产生超连续谱形状和带宽是有影响的.  相似文献   

18.
超连续谱(SC)是当今光通信领域中的研究热点问题之一,应用非常广泛。本文主要利用掺钛蓝宝石飞秒激光器产生的超短脉冲对双锥双光纤进行超连续谱的实验研究。双锥双光纤是由两根普通单模光纤以一定的方式沿光纤轴向均匀拉制而成。实验结果显示:超连续光谱随着输入功率和拉锥长度增加而展宽,拉锥直径大小对双锥双光纤超连续谱展宽有很大影响,同时实验证明在输入功率相同的情况下,双锥双光纤与普通光纤相比可以产生更宽、更平坦的超连续谱。  相似文献   

19.
报道了在前向结构中光纤前端输出处加用3dB耦合器制作的光纤圈反射器形成双程后向输出结构,实现了一种高平坦化的高功率光源。通过调节抽运功率及光纤长度等参量,实现3dB带宽达35.28nm(基本完全覆盖C波段),功率为7.679mW(8.85dBm)和平均波长为1545.881nm的超荧光光纤光源(SS)。与常用技术相比,该技术更简单,实用,同时提高了光源效率,稳定性好,易于降低成本,设计方便。由于L波段的超荧光的本身平坦度较好,此方案可得到高平坦度的C L波段高功率宽带超荧光输山,尤其适用于需要高平坦度高功率超荧光的场合。  相似文献   

20.
基于级联调制器抽运源的1.7μm波段宽带光源   总被引:1,自引:0,他引:1  
设计实验实现了基于级联调制器抽运源的1.7μm波段宽带光源。采用连续光源和级联调制器组合的方式,在反常色散区域抽运1 km的高非线性色散位移光纤,产生了超连续谱。经过光纤波分复用器的滤波后,得到了峰值波长为1748.9 nm、输出功率约为22 dBm、20 dB光谱范围为1.6~2μm、相应的谱宽约为419 nm的宽带光源。通过增加Sagnac滤波器,得到了频率周期为2.5 nm、强度周期为9.5 dB的多波长宽带光源。此外,分析了抽运功率、波长及重复频率对超连续谱展宽的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号