首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo microdialysis was used to investigate the mechanism behind the increase in extracellular dopamine (DA) induced by increase in extracellular serotonin (5-HT) level and 5-HT1 and 5-HT2 receptor activation. The following serotoninergic drugs were perfused in the absence or presence of nomifensine (5 microM) or tetrodotoxin (TTX; 2 microM): clomipramine (10, 500 and 1,000 microM), a selective 5-HT reuptake inhibitor; 8-OH-DPAT (50 and 500 microM), a 5-HT1A receptor agonist; and alpha-methyl-5-HT (1, 5 and 50 microM), a 5-HT2 receptor agonist. All the serotoninergic drugs studied increased DA extracellular output in a dose-dependent manner. The presence of nomifensine attenuated the effect of perfusion of clomipramine (500 microM) and completely abolished the effect of perfusion of 8-OH-DPAT (500 microM) and alpha-methyl-5-HT (5 microM) on DA extracellular output. Clomipramine (100-1,000 microM) perfusion produced a dose dependent increase in DOPAC extracellular output, which was stronger when clomipramine (500 microM) was co-perfused with nomifensine. 8-OH-DPAT and alpha-methyl-5-HT perfusion decreased DOPAC overflow. Addition of TTX to the perfusion fluid one hour before serotoninergic drugs perfusion, did not completely abolish the effect on dopamine extracellular output produced by the serotoninergic drugs. These data seem to indicate that increase in extracellular 5-HT level and 5-HT1 and 5-HT2 receptor activation increase in vivo DA extracellular output in the striatum mainly by a nonexocytotic mechanism involving DA uptake sites and, secondarily, by activation of 5-HT receptors.  相似文献   

2.
We investigated the effect of 8-hydroxy-2-(N,N-dipropylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, on the induction of long-term potentiation in rat visual cortex slices. Perfusion of 8-OH-DPAT (0.1-10 microM) did not affect layer II/III field potentials evoked by test stimulation of layer IV, but significantly reduced long-term potentiation induced by tetanic stimulation. The inhibitory effect of 8-OH-DPAT was blocked by the 5-HT1A receptor antagonist, pindolol (10 microM), but not by the 5-HT2,7 receptor antagonist, ritanserin (100 microM), nor by the 5-HT3,4 receptor antagonist, MDL72222 (100 microM). These results suggest that the rat visual cortex long-term potentiation is inhibited by 5-HT1A receptor stimulation.  相似文献   

3.
The cAMP responses of (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and its enantiomers were measured at cloned human 5-HT1D alpha and 5-HT1D beta receptors in transfected C6-glial cells. R(+)-8-OH-DPAT demonstrated potent intrinsic activity (EC50 value: 30 nM) at 5-HT1D alpha receptor sites, its maximal effect being comparable to that of sumatriptan. Racemic 8-OH-DPAT and S(-)-8-OH-DPAT showed similar agonist efficacy but were respectively 2 and 75 times less potent than R(+)-8-)OH-DPAT. This differs from the lack of stereoselectivity of the 8-OH-DPAT enantiomers for 5-HT1A receptors.  相似文献   

4.
The ionic channels and signal transduction pathways underlying the 5-hydroxytryptamine (5-HT)-induced hyperpolarization in neurons of the rat dorsolateral septal nucleus (DLSN) were examined by using intracellular and voltage-clamp recording techniques. Application of 5-HT (1-50 microM) caused a hyperpolarizing response associated with a decreased membrane resistance in DLSN neurons. The hyperpolarization induced by 5-HT was blocked by Ba2+ (1 mM) but not by tetraethylammonium (TEA, 3 mM), glibenclamide (100 microM) and extracellular Cs+ (2 mM). 8-Hydroxy-di-n-propylamino tetralin (8-OH-DPAT; 3 microM), a selective agonist for the 5-HT1A receptor, mimicked 5-HT in producing the hyperpolarization. The 5-HT hyperpolarization was blocked by NAN-190 (5 microM), a 5-HT1A receptor antagonist. CP93129 (100 microM), a 5-HT1B receptor agonist, and L-694-247 (100 microM), a 5-HT1B/1D receptor agonist, also produced hyperpolarizing responses. The order of agonist potency was 8-OH-DPAT > CP93129 > or = L-694-247. (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI, 100 microM), a 5-HT2 receptor agonist, and RS67333 (100 microM), a 5-HT4 receptor agonist, caused no hyperpolarizing response. The voltage-clamp study showed that 5-HT caused an outward current (I5-HT) in a concentration-dependent manner. I5-HT was associated with an increased membrane conductance. I5-HT reversed the polarity at the equilibrium potential for K+ calculated by the Nernst equation. I5-HT showed inward rectification at membrane potentials more negative than-70 mV. Ba2+ (100 microM) blocked the inward rectifier K+ current induced by 5-HT. I5-HT was irreversibly depressed by intracellular application of guanosine 5'-O-(3-thiotriphosphate)(GTP-gamma S) but not by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). These results suggest that in rat DLSN neurons activation of 5-HT1A receptors causes a hyperpolarizing response by activating mainly the inward rectifier K+ channels through a GTP-binding protein.  相似文献   

5.
The effects of trazodone on the cyclic GMP elevation elicited by N-methyl-D-aspartate in rat cerebellar slices were analyzed. Trazodone inhibited in a concentration-dependent manner (EC50 = 0.82 nM) the cyclic GMP response evoked by 0.1 microM N-methyl-D-aspartate. The inhibition was near complete at 10 nM trazodone. The effect of 10 nM trazodone was unaffected by 0.3 microM spiperone or rauwolscine, antagonists with selectivity for the 5-HT(serotonin)2A or the 5-HT2B subtype, respectively, but it was totally prevented by 0.01 microM mesulergine, a 5-HT2A/5-HT2B/5-HT2C receptor antagonist. Trazodone was potently counteracted (IC50 = 2.7 nM) by the selective 5-HT2B/5-HT2C receptor antagonist N-(1-methyl-5-indolyl)-N-(3-pyridil) urea HCl and, less potently (IC50 = 95 nM), by ketanserin, a 5-HT2A/5-HT2C receptor blocker. It is concluded that trazodone behaves as a potent full agonist at the 5-HT2C receptor mediating inhibition of the cerebellar N-methyl-D-aspartate/nitric oxide/cyclic GMP system.  相似文献   

6.
The dopamine D3/D2 receptor agonists 7-OH-DPAT, quinpirole, quinelorane, and PD128907, the mixed dopamine agonist apomorphine, the D2 agonist bromocriptine, and the D1/D5 agonist SKF38393 were examined in models of hypothermia and prepulse inhibition (PPI) in Wistar rats. As dopamine agonist-induced hypothermia has been proposed as a model of D3 receptor function, and dopamine agonists are known to disrupt PPI, drug potencies to induce hypothermia were established and compared with doses necessary to disrupt PPI. 7-OH-DPAT, quinpirole, quinelorane, PD128907, and apomorphine, reduced body temperature and disrupted PPI with a similar rank order of potency (quinelorane > quinpirole = 7-OH-DPAT > PD128907 = apomorphine). Bromocriptine and SKF38393 were ineffective in both models. In a separate study, the dopamine reuptake inhibitors cocaine and GBR 12909 had no effect on PPI. In a final set of studies, the D2/D3 antagonist raclopride blocked both 7-OH-DPAT-induced hypothermia and 7-OH-DPAT-induced PPI disruption. The 5-HT1A antagonist WAY 100,135, and the peripheral D2-like antagonist domperidone had no effect. These findings suggest that the hypothermia and PPI disruptions seen with some of these dopamine agonists may be mediated by central D3 receptors; however, only studies using more selective dopamine receptor ligands can definitively rule out effects at the D2 or D4 receptors.  相似文献   

7.
The functional regulation by serotonin (5-HT) receptors of the 5-HT-enhanced dopamine (DA) release from the rat substantia nigra (SN) was investigated using in vivo microdialysis. Exogenously administered or extracellularly enhanced 5-HT (by means of intranigral citalopram perfusion) (both 1 microM for 1 h) significantly increased nigral DA efflux to 165% and 145%, respectively. Intranigral administration of pindolol (10 microM, 3 h), a 5-HT1A/1B receptor antagonist which is clinically used in order to block 5-HT1A/1B autoreceptors, did not affect DA levels but significantly increased nigral 5-HT levels to 135%. Co-perfusion of this antagonist with 5-HT (1 microM, 1 h) did not abolish the 5-HT-induced DA release from the SN as DA was increased to 166%. Local application of the 5-HT1A/1B receptor agonist, CP 93129 (1 microM, 1 h), increased DA release from the SN to 4770% whereas 5-HT release was significantly decreased to 75%. Co-perfusion of the 5-HT1A/1B receptor antagonist, pindolol, with this agonist only partly abolished the CP 93129-induced DA release whereas the CP 93129-induced decrease in nigral 5-HT release was completely abolished. Administration of the 5-HT2A/2C receptor antagonist, ketanserin (50 microM, 3 h), significantly increased DA to 143% and 5-HT release to 363%. Co-perfusion of this antagonist with 5-HT still caused an increase in nigral DA release to 214%. Intranigral perfusion of the 5-HT4 receptor antagonist, RS 39604 (10 microM, 3 h), did not affect DA levels but significantly decreased nigral 5-HT levels to 74%. Co-perfusion of this antagonist with 5-HT was able to prevent the 5-HT-enhanced DA efflux from the SN. From this study it can be concluded that the 5-HT-enhanced (and possibly the citalopram-induced) nigral DA release is 5-HT4 receptor mediated.  相似文献   

8.
We examined the modulatory effect of serotonergic activities on haloperidol-induced up-regulation of dopamine D2 receptors in rat striatum. Chronic treatment with haloperidol (0.1, 0.5 mg/kg, i.p., 3 weeks) increased the number of dopamine D2 receptors, while no increase was observed with atypical antipsychotic drugs clozapine (10 mg/kg) and ORG 5222 (0.25 mg/kg). Chronic treatment with MK 212, a serotonin (5-HT)2A/2C receptor agonist (2.5 mg/kg), or with citalopram, a 5-HT reuptake inhibitor (10 mg/kg), potentiated the haloperidol (0.1 mg/kg)-induced up-regulation of dopamine D2 receptor, while that with (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist (0.1 mg/kg), had no influence on the dopamine D2 receptor up-regulation. Co-administration of ritanserin (1 mg/kg), a 5-HT2A/2C receptor antagonist, with a low dose of haloperidol (0.1 mg/kg), but not with a high dose of the agent (0.5 mg/kg), attenuated the dopamine D2 receptor up-regulation. Drug occupation of 5-HT2A and dopamine D2 receptors in vivo examined with use of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was 69.8% and 45.1%, respectively, after the acute administration of haloperidol (0.1 mg/kg) plus ritanserin (1 mg/kg). This profile that 5-HT2A receptors were highly occupied compared with dopamine D2 receptors was similar to that of clozapine or ORG 5222. These results suggest that potent 5-HT2A receptor antagonism versus weak dopamine D2 receptor blockade may be involved in the absence of up-regulation of dopamine D2 receptors after chronic treatment with clozapine or ORG 5222.  相似文献   

9.
Stimulation of [35S]GTPgammaS binding by serotonin (5-hydroxytryptamine, 5-HT) receptor ligands was characterized in rat hippocampal membranes. The optimized assay contained 30-50 microg protein, 300 microM GDP and 0.1 nM [35S]GTPgammaS, incubated at 37 degrees C for 20 min. At 10 microM, the 5-HT1A receptor agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin [R(+)-8-OH-DPAT] stimulated GTPgammaS binding from 27.1 +/- 2.5 to 45.7 +/- 4.2 fmol/mg protein. Increasing the protein concentration did not affect the absolute difference between basal and maximal GTPgammaS binding nor the EC50, but decreased the percent stimulation. The non-selective agonists serotonin and 5-carboxamidotryptamine were 30-35% more efficacious, whereas the partial agonists buspirone and S(-)-8-hydroxy-2-(di-n-propylamino)tetralin stimulated GTPgammaS binding by 19 +/- 1 and 43 +/- 3%, respectively, compared to R(+)-8-OH-DPAT. Neither the 5-HT2 receptor agonist [(+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl] (DOI) nor the 5-HT1A receptor antagonists WAY 100,635 (n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) and spiperone altered basal GTPgammaS binding. WAY 100,635 abolished the effect of R(+)-8-OH-DPAT, but only reduced the effect of serotonin by 88 +/- 3%. Finally, methiothepin antagonized R(+)-8-OH-DPAT-stimulated GTPgammaS binding and reduced basal GTPgammaS binding by itself. The reduction was not affected by WAY 100,635. We have characterized a method to assess functional activity at 5-HT1A receptors in rat hippocampal membranes by measuring agonist-induced [35S]GTPgammaS binding.  相似文献   

10.
The ability of histamine H3 receptor ligands to interact with 5-HT3 receptors in NG108-15 cells was studied using the whole cell patch clamp recording technique. Imetit, a histamine H3 receptor agonist, generated inward currents and exhibited weak partial agonist activity at the 5-HT3 receptor (EC50 = 11.8 microM). Imetit-induced currents were slow to desensitize and at a high concentration reduced in size. The histamine H3 receptor antagonists iodophenpropit and thioperamide did not generate inward currents but were able to inhibit 5-hydroxytryptamine (5-HT) responses with an IC50 of 1.57+/-0.3 microM and 13.7+/-3.5 microM, respectively. Thioperamide is probably a non-competitive antagonist which may have more than one binding site on the receptor.  相似文献   

11.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose-response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

12.
In order to investigate the role of the 5-HT1A receptors of the amygdala in modulating anxiety, rats were implanted with bilateral cannulae aimed at the basolateral nucleus of the amygdala complex and infused with either artificial cerebrospinal fluid (aCSF) or the selective 5-HT1A receptor agonist 8-OH-DPAT (50-200 ng) and tested in two animal models of anxiety. In the elevated plus-maze test, no significant effects were detected in this dose range. In contrast, 8-OH-DPAT caused an overall reduction in levels of social investigation, thus indicating anxiogenic actions in the social interaction test. At 50 ng, 8-OH-DPAT had a selective action on anxiety, while at 200 ng there was a concomitant reduction in locomotor activity and, in some animals, signs of the 5-HT1A syndrome. Evidence that the anxiogenic effect of 8-OH-DPAT (50 ng) was due to activation of 5-HT1A receptors came from the finding that (-)-tertatolol, a 5-HT1A receptor antagonist, reversed this effect at a dose (1.5 micrograms) which was silent when given alone. The benzodiazepine receptor agonist, midazolam (1 and 2 micrograms) was bilaterally administered into the basolateral nucleus of the amygdala and evoked clear-cut anxiolytic effects in the social interaction test. These data indicate that the agonist activation of post-synaptic 5-HT1A receptors in the basolateral nucleus of the amygdala may produce anxiogenic effects, while agonist activation of BDZ receptors in the same areas evokes anxiolytic effects. Our results from the social interaction test are similar to those previously reported from tests of anxiety using punished paradigms, but contrast with those found in the elevated plus-maze. Thus, it is concluded that either the two tests have different sensitivities to midazolam and 8-OH-DPAT or more intriguingly, the tests are evoking fundamentally different states of anxiety, with that evoked by the plus-maze being mediated via brain areas or receptors different from those studied here.  相似文献   

13.
Fast cyclic voltammetry (FCV) was used to measure electrically stimulated monoamine efflux in the rat ventral lateral geniculate nucleus (vLGN). The electrochemical characteristics of the released species resembled 5-HT but not dopamine or noradrenaline. Amine efflux was abolished by the sodium channel blocker tetrodotoxin (0.1 microM), Ro 4-1284 (1.0 microM), the fast-acting reserpine analogue, and removal of Ca2+ from the superfusate. Amine efflux was unaffected by the monoamine oxidase inhibitor clorgyline (0.1 microM). Of paroxetine (0.1 microM), desipramine (50 nM) and vanoxerine (0.5 microM), selective blockers of 5-HT, noradrenaline and dopamine uptake respectively, only paroxetine increased monoamine efflux (to 194 +/- 25%, mean +/- SEM) and prolonged the removal half-life (to 638 +/- 105%). The non-specific 5-HT1 antagonist methiothepin (0.2 microM) increased 5-HT efflux on long (20 pulses at 20 Hz) but not short trains (20 pulses at 100 Hz). When tested on pseudo-one-pulse stimulations (5 pulses, 100 Hz), the selective 5-HT1A agonist 8-OHDPAT (1.0 microM) had no effect. CP 93129 (0.3 microM), the selective 5-HT1B agonist, decreased 5-HT efflux to 37 +/- 4% of control and was antagonised by the 5-HT1B blocker isamoltane (0.5 microM) and by the 5-HT1D/B antagonist GR 127935 (50 nM). The preferential 5-HT1D agonist sumatriptan (0.5 microM) also decreased 5-HT efflux, to 55 +/- 6% and was antagonised by GR 127935 (50 nM) but not isamoltane (0.5 microM). These results suggest that 5-HT released in the vLGN can be measured by FCV. Furthermore, released 5-HT is taken up by the 5-HT transporter and may be under the influence of 5-HT1B and 5-HT1D autoreceptors.  相似文献   

14.
1 In this study we have determined the pharmacological profile of (S)-quisqualic acid, (S)-2-amino-4-phosphonobutyric acid ((S)-AP4) and their higher homologues (S)-homoquisqualic acid, (S)-2-amino-5-phosphonopentanoic acid ((S)-AP5), respectively, and (R)-AP5 at subtypes of metabotropic (S)-glutamic acid (mGlu) receptors expressed in Chinese hamster ovary cells. 2 (S)-Quisqualic acid was a potent mGlu1/mGlu5 agonist (EC50 values of 1.1 microM and 0.055 microM, respectively) showing no activity at mGlu2 and weak agonism at mGlu4 (EC50 approximately 1000 microM). 3 (S)-Homoquisqualic acid displayed competitive antagonism at mGlu1 (KB = 184 microM) and full agonism at mGlu5 (EC50 = 36 microM) and mGlu2 (EC50 = 23 microM), but was inactive at mGlu4. 4 (S)-AP4 was a potent and selective mGlu4 agonist (EC50 = 0.91 microM) being inactive at mGlu1, mGlu2 and mGlu5 both as agonist and antagonist. 5 (S)-AP5 displayed very weak agonist activity at mGlu4. At the mGlu2 receptor subtype (S)-AP5 acted as a competitive antagonist (KB = 205 microM), whereas the compound was inactive at mGlu, and mGlu5. (R)-AP5 was inactive at all mGlu receptor subtypes tested both as agonist and antagonist. 6 These studies demonstrate that incorporation of an additional carbon atom into the backbone of (S)-glutamic acid and its analogues, to give the corresponding homologues, and replacement of the terminal carboxyl groups by isosteric acidic groups have profound effects on the pharmacological profiles at mGlu receptor subtypes. Furthermore, (S)-homoquisqualic acid has been shown to be a potentially useful tool for differentiating mGlu1 and mGlu5.  相似文献   

15.
Wistar-Kyoto (WKY) rats display high emotivity (e.g. anxiety), compared to Wistar rats. The key role of serotonin (5-HT)1B/1D autoreceptors in 5-HT neurotransmission, and its consequences on emotivity, led us to measure the effects of the nonselective 5-HT1B/1D) receptor agonist m-trifluoromethyl-phenylpiperazine (TFMPP) on central tryptophan hydroxylase activity in male WKY and Wistar rats. In addition to strain-dependent differences in central 5-HT synthesis (WKY > Wistar), acute administration of TFMPP (1.5 and 3 mg/kg) decreased the amplitude of m-hydroxy-benzylhydrazine-elicited accumulation of hippocampal, striatal and cortical 5-hydroxytryptophan (5-HTP) in both strains. In midbrain, however, TFMPP decreased 5-HTP accumulation (but not tryptophan levels) in WKY rats only, whereas the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2 mg/kg) decreased midbrain 5-HTP levels to a similar extent in both strains. Pretreatment of WKY rats with the selective 5-HT1B/1D receptor antagonist N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1, 2,4-oxadiozol-3-yl)-biphenyl-4-carboxamide (GR 127935, 1.5 and 3 mg/kg) slightly increased midbrain tryptophan hydroxylase activity but did not affect the negative effect of TFMPP on 5-HTP formation. Pretreatment with the 5-HT1A receptor antagonist (+)-N-tert-butyl-3-(4-[2-methoxyphenyl]piperazin-1-yl)-2-phenylpro panamide ((+)-WAY 100135; 3 mg/kg), which decreased the inhibitory effect of 8-OH-DPAT on midbrain 5-HTP levels by 50%, did not alter that of TFMPP. Lastly, neither reserpine (5 mg/kg), ketanserin (1 mg/kg) mianserin (2 mg/kg) nor idazoxan (1 mg/kg) pretreatments affected TFMPP-induced inhibition of midbrain 5-HTP formation, ruling out a role for monoamine release, 5-HT2 receptors and alpha2-adrenoceptors. Our data show that TFMPP, an agonist often used to stimulate 5-HT1B/1D receptors, may inhibit central 5-HT synthesis through nonserotonergic mechanisms.  相似文献   

16.
This review reports on the pharmacodynamics of the new antipsychotic risperidone. The primary action of risperidone is serotonin 5-HT2 receptor blockade as shown by displacement of radioligand binding (Ki: 0.16 nM), activity on isolated tissues (EC50: 0.5 nM), and antagonism of peripherally (ED50: 0.0011 mg/kg) and centrally (ED50: 0.014 mg/kg) acting 5-HT2 receptor agonists in rats. Risperidone is at least as potent as the specific 5-HT2 receptor antagonist ritanserin in these tests. Risperidone is also a potent dopamine D2 receptor antagonist as indicated by displacement of radioligand binding (Ki: 1.4 nM), activity in isolated striatal slices (IC50: 0.89 nM), and antagonism of peripherally (ED50: 0.0057 mg/kg in dogs) and centrally acting D2 receptor agonists (ED50: 0.056-0.15 mg/kg in rats). Risperidone shows all effects common to D2 antagonists, including enhancement of prolactin release. However, some central effects such as catalepsy and blockade of motor activity occur at high doses only. Risperidone is 4-10 times less potent than haloperidol as a central D2 antagonist in rats and it differs from haloperidol by the following characteristics: predominant 5-HT2 antagonism; LSD antagonism; effects on sleep; smooth dose-response curves for D2 antagonism; synergism of combined 5-HT2/D2 antagonism; pronounced effects on amphetamine-induced oxygen consumption; increased social interaction; and pronounced effects on dopamine (DA) turnover. Risperidone displays similar activity at pre- and postsynaptic D2 receptors and at D2 receptors from various rat brain regions. The binding affinity for D4 and D3 receptors is 5 and 9 times weaker, respectively, than for D2 receptors; interaction with D1 receptors occurs only at very high concentrations. The pharmacological profile of risperidone includes interaction with histamine H1 and alpha-adrenergic receptors but the compound is devoid of significant interaction with cholinergic and a variety of other types of receptors. Risperidone has excellent oral activity, a rapid onset, and a 24-h duration of action. Its major metabolite, 9-hydroxyrisperidone, closely mimics risperidone in pharmacodynamics. Risperidone can be characterized as a potent D2 antagonist with predominant 5HT2 antagonistic activity and optimal pharmacokinetic properties.  相似文献   

17.
The genetically dystonic (dtsz) hamster is an autosomal recessive mutant that shares several features with paroxysmal dystonia, i.e., a subcategory of inherited idiopathic dystonia in humans. Because the serotonin (5-HT) system has been suggested to be involved in dystonia, we examined the functional responsiveness of the 5-HT system in dystonic hamsters by administering various 5-HT agonists and antagonists selective for different receptor subtypes and observing the effects on dystonic attacks as well as the behavioural responses associated with drug administration. Paradoxically, marked prodystonic effects (i.e., increased severity and/or decreased latency of dystonic attacks) were seen with both the selective 5-HT1A receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and the selective and "silent" 5-HT1A receptor antagonist, N-tert-butyl-3[4-(2-methoxyphenyl)piperazin-1-yl]-2- phenylpropionamide [(+)-WAY-100135], whereas other 5-HT1A receptor antagonists, i.e., methyl 4[4-(4-[1,1,3-trioxo-2H-1,2-benzoiosothiazol-2-yl]butyl)-1- piperazinyl]1-H-indole-2-carboxylate (SDZ 216-525) and N1-bromoacetyl-N8-3'-(4-indolyloxy)-2'-hydroxypropyl-(Z)-1,8- diamino-p-methane (pindobind-5-HT1A) did not alter dystonia to any comparable extent. Because among these 5-HT1A receptor antagonists, (+)-WAY-100135 is the only drug known to be not only silent at postsynaptic but also presynaptic (somatodendritic) 5-HT1A receptors, the marked prodystonic effect of this drug could relate to increased 5-HT release as a result of the blockade of somatodendritic 5-HT1A receptors. The only 5-HT1A receptor antagonist that exerted antidystonic effects in hamsters was pindolol, which, however, could be related to its beta-adrenoceptor blocking action. The 5-HT1A receptor partial agonist ipsapirone exerted moderate prodystonic activity. Prodystonic activity was also determined for the mixed 5-HT1A/5-HT2 receptor agonist 5-methoxy-N,N-dimethyltryptamine, although this drug was less potent in this regard than 8-OH-DPAT. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) exerted prodystonic effects in mutant hamsters, which, however, were also seen after the administration of the 5-HT2 receptor antagonist ritanserin. Collectively, the results of this study demonstrate that dystonia in genetically dystonic hamsters can be affected by pharmacologic manipulation of 5-HT receptors. The data may also indicate that dystonia is not a potential clinical application for selective 5-HT1A or 5-HT2 receptor antagonists.  相似文献   

18.
We have investigated the effect of 5-HT2 receptor agonist or antagonist administration on postsynaptic 5-HT1A receptor sensitivity assessed by two behavioral measures, reciprocal forepaw treading or hypothermia induced by acute injection of the 5-HT1A receptor agonist 8-OH-DPAT. The effectiveness of these drug treatments to downregulate 5-HT2A receptors was confirmed by measuring the binding of [3H]-ketanserin in cortical homogenates, because all of these drug treatments have been shown to result in the downregulation of 5-HT2A receptor sites. Acute or chronic treatment of rats with the 5-HT2 receptor antagonist mianserin, or chronic administration of the 5-HT2A receptor antagonist ketanserin, did not alter 8-OH-DPAT-induced hypothermia or forepaw treading. These data indicate that downregulation of 5-HT2A receptors is not sufficient to alter these postsynaptic 5-HT1A receptor-mediated responses. Chronic treatment of rats with the 5-HT2 receptor agonist DOI, however, resulted in the attenuation of both 5-HT1A receptor-mediated responses measured in separate experimental groups. The apparent desensitization of 5-HT1A receptors following chronic DOI treatment was not accompanied by a change in either the number or affinity of 5-HT1A receptor sites as measured by the binding of [3H]-8-OH-DPAT in hippocampal homogenates. Chronic activation of 5-HT2 receptors may be one mechanism by which the sensitivity postsynaptic 5-HT1A receptors can be regulated.  相似文献   

19.
Serotonin (5-HT) receptor interaction in the control of female rat lordosis behavior was examined. Ovariectomized rats, with bilateral implants in the ventromedial nucleus of the hypothalamus (VMN), were hormonally primed with 25 micrograms estradiol benzoate and 500 micrograms progesterone. Rats were infused with the 5-HT3 receptor antagonist, 3-tropanyl-indole-3 carbonylate (tropisetron; 500 ng), or were coinfused with the 5-HT3 receptor antagonist and the 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 500, 1500, or 2000 ng). Additional ovariectomized, hormone-primed rats received bilateral VMN infusions with the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 200 ng), or were coinfused with the 5-HT1A receptor agonist and the 5-HT3 receptor agonist, m-chlorophenyl-biguanide (mCPBG; 250, 500, or 1000 ng). Lordosis behavior was observed prior to VMN infusion, during the infusion and for 30 consecutive minutes thereafter. Tropisetron reduced the lordosis to mount (L/M) ratio in every animal investigated but the decline was attenuated by coinfusion with DOI. Similarly, the L/M ratio declined following infusion with 8-OH-DPAT and the decline was dose-dependently reduced by coinfusion with mCPBG. Only the 5-HT3 receptor agonist altered the quality of the lordosis reflex. These studies provide evidence that the effects of 5-HT on female rat lordosis behavior involve the integrated activity of at least 3 different 5-HT receptor families.  相似文献   

20.
The present study has utilized the two electrode voltage-clamp technique to examine the pharmacological profile of a splice variant of the rat orthologue of the 5-hydroxytryptamine type 3A subunit (5-HT3A(b)) heterologously expressed in Xenopus laevis oocytes. At negative holding potentials, bath applied 5-HT (300 nM - 10 microM) evoked a transient, concentration-dependent (EC50 = 1.1+/-0.1 microM), inward current. The response reversed in sign at a holding potential of -2.1+/-1.6 mV. The response to 5-HT was mimicked by the 5-HT3 receptor selective agonists 2-methyl-5-HT (EC50= 4.1+/-0.2 microM), 1-phenylbiguanide (EC50=3.0+/-0.1 microM), 3-chlorophenylbiguanide (EC50 = 140+/-10 nM), 3,5-dichlorophenylbiguanide (EC50 = 14.5+/-0.4 nM) and 2,5-dichlorophenylbiguanide (EC50 = 10.2+/-0.6 nM). With the exception of 2-methyl-5-HT, all of the agonists tested elicited maximal current responses comparable to those produced by a saturating concentration (10 microM) of 5-HT. Responses evoked by 5-HT at EC50 were blocked by the 5-HT3 receptor selective antagonist ondansetron (IC50=231+/-22 pM) and by the less selective agents (+)-tubocurarine (IC50=31.9+/-0.01 nM) and cocaine (IC50 = 2.1+/-0.2 microM). The data are discussed in the context of results previously obtained with the human and mouse orthologues of the 5-HT3A subunit. Overall, the study reinforces the conclusion that species differences detected for native 5-HT3 receptors extend to, and appear largely explained by, differences in the properties of homo-oligomeric receptors formed from 5-HT3A subunit orthologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号