首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
层叠Ni/Ti热扩散形成金属间化合物的规律   总被引:1,自引:0,他引:1       下载免费PDF全文
选择Ni和Ti粉末及其机械合金化粉末制备Ni/Ti扩散偶,利用扫描电镜和X射线衍射等手段研究了Ni/Ti扩散偶在固相热处理作用下金属间化合物的形成及生长规律.随着热处理温度的提高,Ni3Ti,Ti2Ni和NiTi金属间化合物的数量增加明显;随热处理保温时间的增加,NiTi金属间化合物呈抛物线规律生长,而对Ni3Ti和Ti2Ni的生长影响不大.结果表明,金属间化合物在形成过程中,Ni3Ti和Ti2Ni优先形成,达到一定厚度后,NiTi金属间化合物开始形成并快速增长.  相似文献   

2.
扩散连接接头金属间化合物新相的形成机理   总被引:13,自引:4,他引:13       下载免费PDF全文
扩散连接接头中界面区脆性金属间化合物相的出现往往会造成接头性能的恶化,因此研究并建立接头界面区金属间化合物相的生成和成长行为的数学模型对扩散连接过程有非常重要的理论及现实意义。本文根据扩散理论,指出界面处生成相的动力学驱动力限决于扩散偶中组元自身的特性,生成机的组元及比例应按原子扩散通量比优先生成,本文从动力学及热力学角度出发,提出了多组元扩散偶界面处的金属间化合物生成相原则:通量-能量原则;并以钛/镍/钢扩散接接头为例,证明钛/镍界面处金属间化合物相的生成规律为Ni/TiNi3/TiNi/Ti2Ni/Ti。提出,通量-能量能力相当的两种或多种金属间化合物有可能同时形核篚,接头界面处会形成混合的金属间化合物。  相似文献   

3.
赵贺  曹健  冯吉才 《焊接学报》2009,30(9):61-64
采用镍箔做中间层,在真空下对TC4和ZQSn10-2-3进行扩散连接.使用扫描电镜对接头的界面组织进行了研究.确定TC4/Ni/ZQSn10-2-3接头的界面结构是TC4/β-Ti/Ti2Ni/TiNi/TiNi31Ni/Cu(Cu,Ni)/ZQSn10-2-3.通过最优工艺试验,确定最佳工艺参数为连接温度830℃,连接压力10 MPa,连接时间30 min.此时接头最大抗剪强度为135 MPa,接头断口为带有一定塑性的结晶状形貌.通过x射线衍射对断口分析认为,断裂位于TC4/Ni界面处的金属间化合物TiNi3层.  相似文献   

4.
对钛合金TC4与铜合金ZQSn10-10异种金属扩散连接进行了试验研究.采用Ni Cu中间层时,其最佳工艺参数为连接温度850 ℃,连接时间20 min,连接比压力10 MPa,抗拉强度达到155.8 MPa.在TC4/Ni界面上,形成了成分逐渐变化的互扩散层.经微区成分分析可知,连接温度为800 ℃时,界面主要为Ni3Ti;850 ℃时,界面主要为Ni3Ti及NiTi;880 ℃时,界面主要为NiTi2,Ni3Ti及NiTi.通过EDS和XRD分析,接头强度主要取决于镍钛金属间化合物的种类及厚度.  相似文献   

5.
TiAl/Ni基合金反应钎焊接头的微观组织及剪切强度(英文)   总被引:1,自引:0,他引:1  
以Ti为中间层,对TiAl基金属间化合物与Ni基高温合金进行反应钎焊连接,研究反应钎焊接头的界面微观结构及剪切强度。通过实验发现,熔融中间层与两侧母材反应剧烈,生成连续的界面反应层。典型的界面微观结构为GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl。当钎焊温度为1000°C,保温时间10min时,所得接头的剪切强度最高为258MPa。进一步升高钎焊温度或延长保温时间,会引起钎缝组织中组成相粗化和脆性金属间化合物层的生成,从而导致接头剪切强度的降低。  相似文献   

6.
以铜箔为中间层,对Super-Ni叠层复合材料与Ti-6Al-4V钛合金进行过渡液相扩散焊.通过扫描电镜(SEM)、能谱分析(EDS)、显微硬度测试对接头的界面组织及性能进行分析.结果表明,铜箔中间层阻止了钛与镍的扩散接触,防止了Ti-Ni脆性金属间化合物的生成.扩散焊接头由Super-Ni侧扩散层、中间反应层、钛侧扩散层三个特征界面层组成.界面处Ni,Al原子扩散缓慢,Cu,Ti原子充分扩散反应,在中间反应层与钛侧扩散层之间形成由TiCu相组成的锯齿状界面,在钛侧扩散层生成细小的Ti_2Cu相,接头过渡区显微硬度最高达600 HV0.5.  相似文献   

7.
采用等离子结合电弧喷涂的工艺方法在工业纯钛表面制备了Al/Ni Cu组合涂层,在700℃的大气环境下对Al/Ni Cu/Ti试件进行加热处理,使得Al、Ni Cu复合涂层之间发生扩散反应并原位生成具有一定抗高温氧化性能的Ni-Al金属间化合物涂层。对加热改性处理前后涂层的微观组织及Ni-Al金属间化合物的形成机理进行了研究,并对经加热和打磨处理后的Al/Ni Cu/Ti试件及无防护涂层的Ti块进行了800℃/100 h的高温氧化试验。研究结果显示,Ti基体表面Al/Ni Cu涂层经700℃炉中加热改性处理后,Al、Ni Cu涂层间可发生扩散反应并原位生成Ni Al3、Cu Al2、Ni2Al3及含有一定Cu元素的Ni Al金属间化合物,但只有高熔点的Ni Al金属间化合物能够始终稳定地存在,且此金属间化合物对Ti基体起到了较好的高温防护作用。  相似文献   

8.
采用电沉积Ni/Cu层作为中间层实现了TC4钛合金瞬时液相(TLP)扩散连接,采用扫描电子显微镜、能谱仪和X射线衍射仪研究了Cu层厚度对TC4钛合金接头界面微观组织和力学性能的影响,并结合Ti-Cu和Ti-Ni二元相图阐明了反应机制。结果表明,瞬时液相扩散连接接头的典型界面组织为TC4/α-Ti+Ti2(Cu, Ni)/TC4,其中Ni元素均以固溶体的形式存在于接头中。随着电沉积Cu层厚度增加,扩散层和焊缝宽度增加,接头中央未焊合的孔洞消失,反应层中开始出现连续的Ti2(Cu, Ni)金属间化合物层且宽度逐渐增加。接头抗拉强度在电沉积Cu层厚度为15 μm时达到最大值500 MPa。断裂分析表明,所有TLP扩散连接接头均以解理断裂方式在焊缝处断裂。  相似文献   

9.
采用纯钛箔做中间层扩散连接TiAl合金与镍基高温合金(GH99).利用扫描电镜、电子探针和X射线衍射等手段对界面产物及接头的界面结构进行分析.结果表明,GH99/Ti界面主要由四个反应层组成,分别为(Ni,Cr)ss,富Ti-(Ni,Cr)ss,TiNi和Ti2Ni.当保温时间较短时,Ti/TiAl界面反应层主要为Ti(Al)ss.延长保温时间,此界面反应层转化为Ti3Al和Al3NiTi2.随着保温时间的延长,TiNi反应层厚度持续增加,而Ti2Ni反应层厚度先增加后减小.随保温时间的延长接头的抗剪强度先增加后减小,然后又增加.由接头断口形貌可以看出,接头主要断裂于Ti2Ni反应层.  相似文献   

10.
Cu与NbTi之间扩散反应的研究   总被引:10,自引:0,他引:10  
采用电子探针微分析术研究了机械复合和冶金复合两种界面状态的Nb-Ti/Cu复合超导线,以及Nb-Ti/Cu,Ti/Cu和Nb/Cu偶的扩散反应过程.结果表明,原始组件的界面状态对Nb-Ti/Cu间金属间化合物的生成有明显的影响.机械复合组件较冶金复合组件能承受更高的热处理温度而不致生成金属间化合物.Ti与Cu之间反应生成化合物的次序与形态及NbTi与Cu之间不同.Ti/Cu间生成化合物的厚度y与时间t关系遵循y~(1.5-t)的规律.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

14.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

15.
Tang Dynasty 《中国铸造》2014,(4):I0002-I0003
<正>Bronze mirrors were used by the Chinese people before the introduction of the glass mirror.Only after it was replaced by the glass mirror did the bronze mirror gradually retreat from people's lives.Different styles of bronze mirrors were made in different historical periods,particularly in the Warring States Period,the Han and Tang Dynasties,which were the three peaks of the development of bronze mirror arts in ancient China.The casting techniques were exquisite.The surface of the bronze mirror was smooth and bright enough to reflect one's image,and there were scarcely any casting defects on the mirror surface.On the back of the bronze mirror,there were rich depictions of Arts and Humanities,and the ornamentations were also  相似文献   

16.
《中国铸造》2014,(5):464-466
The 9th China International Diecasting Congress & Exhibition was held on July 22-24, 2014 at Shanghai New International Expc Centre. This exhibition was the most successful over the years, with over 6890 visitors and 155 exhibitors, and the exhibition area increased by 30% from 9,500 square meters in 2012 to 12340 square meters. Die casting enterprises from a total of 24 countries and regions, including China mainland, Chinese Taiwan and Hong Kong, South Korea, Japan, Germany, India, Thailand, Malaysia, the United States, Russia, Australia, Iran, Ukraine, Brazil, Colombia, Singapore, Austria, Canada, Croatia, France, Turkey, United Kingdom, Vietnam, attended the congress and exhibition.  相似文献   

17.
正The Fluid Control Engineering Institute of Kunming University of Science and Technology was set up in 1996.The researches of institute concentrate on electro-hydraulic(pneumatic)servo/proportional control and hydromechatronics.The Institute is committed to research and development of electro-hydraulic control of high-end technical equipment in ferrous metallurgy refining produc-  相似文献   

18.
19.
Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE (molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.  相似文献   

20.
Fatigue damage increases with the applied loading cycles in a cumulative manner and the material deteriorates with the corrosion time. A cumulative fatigue damage rule under the alternative of corrosion or cyclic loading was proposed. The specimens of aluminum alloy LY12-CZ soaked in corrosive liquid for different times were tested under the constant amplitude cyclic loading to obtain S-N curves. The test was carried out to verify the proposed cumulative fatigue damage rule under the different combinations among corrosion time, loading level, and the cycle numbers. It was shown that the predicted residual fatigue lives showed a good agreement with the experimental results and the proposed rule was simple and can be easily adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号