首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a driving scheme to achieve highly stable low-power amorphous silicon (a-Si:H) active-matrix organic light-emitting diode (AMOLED) displays. Although the conventional 2-thin-film transistor (TFT) a-Si:H AMOLED display has demonstrated interesting features, including simplicity, it is prone to growing nonuniformity due to the temporal instability of the a-Si:H material. Several compensating techniques have been proposed to control the nonuniformity, but they tend to compromise the key attributes of the simple 2-TFT display such as low power consumption, high yield, high aperture ratio, low implementation cost, and fast programming. For mobile applications which have tight constrains on power consumption, cost, and escalating resolution requirements, we propose a new driving and addressing scheme that not only improves the backplane stability, but also compensates for the OLED luminance degradation while maintaining the attractive features of the simple 2-TFT pixel circuit. The overhead in power consumption and implementation cost is reduced by over 90% compared to existing compensation driving schemes.  相似文献   

2.
Hydrogenated amorphous silicon (a-Si:H) active matrix organic light-emitting diode (AMOLED) displays are attractive given the potentially low manufacturing cost and ultimately low-temperature fabrication enabling using flexible substrates. Although the conventional two thin-film transistor (2-TFT) AMOLED voltage-programmed pixel circuit (VPPC) can provide high resolution and high yield, the 2-TFT VPPC is prone to image retention over time due to shift in the threshold voltage (VT-shift) of a-Si:H TFTs. This paper presents a new driving scheme that not only preserves the simplicity of the 2-TFT VPPC, but also demonstrates high uniformity. Experimental results indicate that the current drop in the new driving scheme is less than 11% after 15 days of operation whereas it is over 50% for the conventional driving scheme. Moreover, the new driving scheme is less sensitive to temperature variations due to an internal feedback mechanism. After a 70% change in the temperature, the current in the conventional driving scheme increases by as much as 300%. However, the current in the driving scheme presented here is approximately constant  相似文献   

3.
We propose a new hydrogenated amorphous silicon thin-film transistor (a-Si:H TFT) pixel circuit for an active matrix organic light-emitting diode (AMOLED) employing a voltage programming. The proposed a-Si:H TFT pixel circuit, which consists of five switching TFTs, one driving TFT, and one capacitor, successfully minimizes a decrease of OLED current caused by threshold voltage degradation of a-Si:H TFT and OLED. Our experimental results, based on the bias-temperature stress, exhibit that the output current for OLED is decreased by 7% in the proposed pixel, while it is decreased by 28% in the conventional 2-TFT pixel.  相似文献   

4.
The variation of electrical characteristics of polycrystalline-silicon thin-film transistor (TFT) and degradation of organic light-emitting-diode (OLED) device cause nonuniform intensity of luminance and image sticking in active-matrix OLED (AMOLED) displays. An external compensation method that senses and compensates variations of threshold voltage and mobility of TFTs and degradation of OLED device is proposed. The effect of the external compensation method on AMOLED pixel is experimentally verified by measuring the luminance of OLEDs and the electrical characteristics of TFTs in AMOLED pixels.   相似文献   

5.
A new voltage-programmed driving scheme named the mixed parallel addressing scheme is presented for AMOLED displays, in which one compensation interval can be divided into the first compensation frame and the consequent N-1 post-compensation frames without periods of initialization and threshold voltage detection. The proposed driving scheme has the advantages of both high speed and low driving power due to the mixture of the pipeline technology and the threshold voltage one-time detection technology. Corresponding to the proposed driving scheme, we also propose a new voltage-programmed compensation pixel circuit, which consists of five TFTs and two capacitors(5T2C). In-Zn-O thin-film transistors(IZO TFTs) are used to build the proposed 5T2C pixel circuit. It is shown that the non-uniformity of the proposed pixel circuit is considerably reduced compared with that of the conventional 2T1C pixel circuit. The number of frames(N) preserved in the proposed driving scheme are measured and can be up to 35 with the variation of the OLED current remaining in an acceptable range. Moreover, the proposed voltage-programmed driving scheme can be more valuable for an AMOLED display with high resolution, and may also be applied to other compensation pixel circuits.  相似文献   

6.
In this study, AMOLED display panel was fabricated on polyethylene (PET) fabric substrate. By considering flexibility of the PET fabric, organic thin film transistors (OTFTs), which used TIPS-pentacene as the active layer material, were adopted as the driving devices for the OLEDs. A standard pixel circuit was employed using two OTFTs and one capacitor and one OLED. The panel specifications were as follows; a pixel pitch of 1.5 × 1.5 mm, a resolution of 32 × 32, an aperture ratio of 22%, and a diagonal length of 2.7 inches. The large surface roughness of the PET fabric could be reduced down to 0.3 μm from the initial roughness of 10 μm by coating polyurethane and photo-acrylic with a two-step process. On the smoothened fabric, the OTFTs and OLEDs were integrated into the pixel array through the key processes, the self-patterning of the gate dielectric of the OTFTs and the patterning of the TIPS-pentacene layer. The mobility of two OTFTs was 0.23 and 0.34 cm2/V∙sec in the pixel array, respectively, and the luminance of the OLED was 64,459 cd/m2. The AMOLED panel successfully operated to vary the luminance of each pixel according to the applied voltages.  相似文献   

7.
具有顶部发光结构的AMOLED交流驱动电路   总被引:1,自引:1,他引:0  
A new voltage programmed pixel circuit with top emission design for active-matrix organic lightemitting diode(AMOLED) displays is presented and verified by HSPICE simulations.The proposed pixel circuit consists of five poly-Si TFTs,and can effectively compensate for the threshold voltage variation of the driving TFT.Meanwhile,the proposed pixel circuit offers an AC driving mode for the OLED by the two adjacent pulse voltage sources,which can suppress the degradation of the OLED.Moreover,a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.  相似文献   

8.
This letter presents a stable compensation scheme for active-matrix organic light-emitting-diode (AMOLED) displays based on the observed strong interdependence between the luminance degradation of organic light-emitting diodes (OLEDs) and its current drop under bias stress. This feedback-based compensation provides 30% improvement in luminance stability under 1600 h of accelerative stress. To employ this scheme in AMOLED displays, a new pixel circuit is presented that provides on-pixel electrical access to the OLED current without compromising the aperture ratio.  相似文献   

9.
王颖 《现代显示》2011,(9):26-29
文章介绍了一种有机发光二极管的电路仿真宏模型及其元件参数数值的提取方法。该电路仿真宏模型不但表征了有机发光二极管的全固态多层结构,而且表征有机发光二极管发光的物理过程。同时还提出了采用交流阻抗法提取该有机发光二极管电路仿真宏模型的元件参数的方法。该有机发光二极管的电路仿真宏模型可用于有源二极管显示器的背板电路设计过程中,背板电路与有机发光二极管器件的联合电路功能仿真,从而实现更准确的背板电路性能评估。  相似文献   

10.
This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compensate for the threshold voltage variation in poly-Si and the OLED degradation. As there is no light emission, except for during the emitting period, and a small number of devices used in the proposed pixel circuit, a high contrast ratio and a high pixel aperture ratio can be easily achieved. Simulation results by SMART-SPICE software show that the non-uniformity of the OLED current for the proposed pixel circuit is significantly decreased (〈 10%) with an average value of 2.63%, while that of the conventional 2T1C is 103%. Thus the brightness uniformity of AMOLED displays can be improved by using the proposed pixel circuit.  相似文献   

11.
We propose a new thin-film-transistor (TFT) pixel circuit for active-matrix organic light-emitting diode (AMOLED) composed of four TFTs and two capacitors. The simulation results, based on the device performances measured for an OLED and a poly-Si TFT, indicate that the proposed circuit has high immunity to the variation of poly-Si TFT characteristics  相似文献   

12.
We model and analyze the power consumption and resulting temperature rise in active-matrix organic-light-emitting device (AMOLED) displays as a function of the OLED efficiency, display resolution and display size. Power consumption is a critical issue for mobile display applications as it directly impacts battery requirements, and it is also very important for large area applications where it affects the display temperature rise, which directly impacts the panel lifetime. Phosphorescent OLEDs (PHOLEDs) are shown to offer significant advantage as compared to conventional fluorescent OLEDs due to high luminous efficiency resulting in lower pixel currents, reducing both the power consumed in the OLED devices and the series connected driving thin-film transistor (TFT). The power consumption and temperature rise of OLED displays are calculated as a function of the device efficiency, display size, display luminance and the type of backplane technology employed. The impact of using top-emission OLEDs is also discussed.  相似文献   

13.
Active matrix organic-light-emitting-diode (AM OLED) panels, driven by organic thin-film transistors (OTFT), have been successfully fabricated on a flexible plastic substrate. The pixel circuit consists of two bottom-contact pentacene OTFTs working as switching and driving transistors. The panel has 16 /spl times/ 16 pixels, each of which have an OLED using a phosphorescent material with an emission efficiency of 30 cd/A. A tantalum oxide (Ta/sub 2/O/sub 5/) film with a dielectric constant of 24, prepared by the anodization of Tantalum (Ta), was used as the gate insulator of the OTFTs. The passivation layer on the OTFTs was formed by a layer of silicon dioxide (SiO/sub 2/) and two layers of polyvinyl alcohol. Using OTFTs with a Ta/sub 2/O/sub 5/ gate insulator, the authors have realized a flexible active matrix OLED panel driven with a low voltage of -12 V.  相似文献   

14.
AM-OLED像素驱动电路的研究   总被引:2,自引:1,他引:1  
李震梅  董传岱 《电视技术》2004,(12):49-51,54
分析和比较了目前典型的几种AM-OLED单元像素驱动电路,论述了二管驱动OLED电路的设计,最后采用EDA电路通用分析软件AIM-SPICE对所设计的电路进行了验证和优化,为AM-OLED单元像素驱动电路的设计、参数选择和性能分析提供了依据.  相似文献   

15.
In this paper, an improved ac pixel electrode circuit for active-matrix organic light-emitting display (AMOLED) has been proposed by adding a thin-film transistor. This circuit can provide an ac driving mode for AMOLED and makes the OLED in a reversed-biased voltage during the reverse cycle. And a circuit design for understanding ac driving mode was presented. The circuit simulation results indicate that this circuit is feasible. The circuit structure is practical for the AMOLED pixel driver; it can improve the performance of OLED.  相似文献   

16.
A scheme of driving active matrix organic light emitting diode (AMOLED) displays with hydrogenated amorphous silicon (a-Si) thin-film transistors (TFTs) is presented. By sending a feedback voltage from each pixel to a column driver during the programming cycle, the driving scheme can compensate for the instability of the TFTs, in particular, the shift in the threshold voltage. Measurement results show no change in the OLED current in the presence of a 1.3-V shift in the threshold voltage. Based on circuit analysis, a simple lead compensator and an accelerating pulse were employed to achieve fast pixel programming for a wide range of OLED currents. Simulation results show a programming time of less than 70 /spl mu/s for OLED currents as low as 50 nA.  相似文献   

17.
有源矩阵有机电致发光像素电路的研究进展   总被引:1,自引:0,他引:1  
有源驱动方式的有机发光二极管(AMOLED)较之无源驱动方式易于实现高亮度和高分辨率、功耗更小,更适合大屏幕显示。但传统的两管驱动电路会出现驱动管阈值电压在整个屏幕上分布不均匀,或长时间加偏压后驱动管的阂值电压发生漂移。本文在两管驱动电路的基础上介绍了几种最近提出的补偿电路并描述了它们的改善效果及各自存在的问题。  相似文献   

18.
This work presents a new voltage programmed pixel circuit for an active-matrix organic light-emitting diode(AMOLED) display.The proposed pixel circuit consists of six low temperature polycrystalline silicon thinfilm transistors(LTPS TFTs),one storage capacitor,and one OLED,and is verified by simulation work using HSPICE software.Besides effectively compensating for the threshold voltage variation of the driving TFT and OLED,the proposed pixel circuit offers an AC driving mode for the OLED,which can suppress the degradation of the OLED.Moreover,a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.  相似文献   

19.
Recent advances in organic light emitting diode (OLED) device efficiencies are making the amorphous silicon (a-Si) backplane a viable solution for a large range of display sizes. This paper presents the possibilities and design challenges of a-Si active-matrix organic light-emitting-diode (AMOLED) backplanes for applications ranging from small full color cell phone displays to HDTV screens. An analytical model for the minimum pixel-area, and hence the maximum resolution for both bottom and top emitting AMOLED architectures is presented in terms of the a-Si thin-film transistor (TFT) device parameters, the process design-rules, and the pixel circuit parameters. It is established that the lower device mobility of a-Si TFTs is no longer the limiting factor. For instance, in a 20' W/SXGA panel with full color red-green-blue subpixels, the state-of-the-art TFT processes yield a square pixel size of /spl sim/266 /spl mu/m. Further, quantitative analysis of charge-injection/charge-feedthrough error in the pixel, and the maximum allowable leakage current for the TFT is also presented.  相似文献   

20.
Driving schemes for a-Si and LTPS AMOLED displays   总被引:5,自引:0,他引:5  
Design of stable active matrix organic light-emitting diode (AMOLED) displays comes with significant challenges that stem from the electrical property of the backplane materials, line parasitics in the matrix, and the opto-electronic property of the organic light-emitting diode (OLED). This paper reviews voltage and current programming schemes for AMOLEDs. Following a systematic review of pixel circuits, design considerations are examined for both current and voltage schemes with focus on stability and programming speed for both amorphous silicon (a-Si) and low temperature polysilicon (LTPS) pixel circuits. In particular, spatial parameter variations and stability, which hinder reliable operation of AMOLED display backplanes, are discussed. Analysis shows that while driving schemes reported hitherto maybe suitable for small and medium size displays, new schemes are critically needed for large-area high-resolution AMOLED displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号