首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic Reduction of Phytate in Whole Wheat Breads   总被引:1,自引:0,他引:1  
The presence of phytate in flour may be responsible for reduced bioavailability of iron, magnesium, zinc, and calcium from bread. The effect of various concentrations of commercial phytase or phosphatase added to whole wheat flour-yeast doughs on their phytate and nonphytate phosphorus content has been investigated. By using 2.0% (flour basis) of phytase and 0.11% phosphatase the initial phytate phosphorus concentration of the dough was reduced to 1/8 and 1/12 of its initial values, respectively. Storage of the whole wheat breads for up to 96 hr at room temperature showed further significant reduction of phytate phosphorus. The phytate phosphorus content of yeast leavened whole wheat breads decreased during 2 hours of dough fermentation, baking and the subsequent 48 hours of storage at room temperature from 24 mg/100g dough (dry matter) to 1.7 mg/100g bread (dry matter); the phytate phosphorus continued to decrease and after 96 hours storage it was 0.6 mg/100g bread.  相似文献   

2.
Phytic acid was determined in cereal (brans, flours and milled wheat-products) and breads. The method was based on complexometric titration of residual iron (III) after phytic acid precipitation. The cereal flours showed values ranged between 3–4 mg/g for soft wheats, 9 mg/g for hard wheat and 22 mg/g for whole wheat. Corn, millet and sorghum flours reported a mean of 10 mg/g and oat, rice, rye and barley between 4 and 7 mg/g. Wheat brans had wide ranges (25–58 mg/g). The phytic acid for oat brans was half that of wheat bran (20 mg/g) and higher value (58 mg/g) than that for rice bran. The milling products (semolinas) from hard wheat exhibited 10 mg/g and soft wheat a mean of 23 mg/g. The breads made with single or mixture cereal flours exhibited ranges between 1.5 and 7.5 mg/g. The loss of phytic acid relative to unprocessed flours was between 20% for oat bread and 50% for white bread.  相似文献   

3.
Bakery products, especially breads, are important part of everyday diet. Home-made breads are all the more crucial on the gluten-free diet, as commercially available breads without gluten are often unattractive. The study presents the recipe, nutritional characteristics (fat, protein, calcium, magnesium, sodium, potassium, copper, iron, zinc, manganese), costs and consumer acceptance of four easy to make home-made gluten-free breads. Partial substitution of bread-mix based on corn and rice (control bread) with teff flour, amaranth flour or quinoa flour significantly changed the content of the most of analysed nutrients, while their price was comparable. The highest nutritional benefits were found for protein, magnesium, potassium, calcium, zinc, iron and manganese in bread with teff and for magnesium, potassium, zinc and manganese in bread with amaranth. The highest consumer acceptance of people on gluten-free diet was noticed for breads with quinoa and teff.  相似文献   

4.
We completed a series of studies to assess the acceptability of zinc-fortified, cereal-based complementary foods and zinc-fortified wheat breads. Young children and their caregivers completed acceptability tests with complementary foods fortified with iron only (60 mg iron as ferrous fumarate per kilogram cereal flour), or the same level of iron and zinc (240 mg zinc as zinc oxide per kilogram cereal flour), and the caregivers completed triangle taste tests to compare the same products. A separate group of adult participants completed acceptability tests with wheat breads fortified with iron and folic acid (15 mg iron as ferrous fumarate per kilogram flour and 1.5 mg folic acid per kilogram flour) or the same levels of iron-folic acid and 2 levels of zinc (63 mg zinc or 126 mg zinc as zinc oxide per kilogram flour). Finally, a threshold test was administered to another group of adult participants to compare nonfortified wheat bread to breads fortified with zinc in 80 mg increments ranging from 80 to 400 mg zinc as zinc oxide per kilogram flour. All products were acceptable when compared to non-zinc-fortified equivalents, and were well liked by the respective participants. For the triangle tests, caregivers were not able to detect significant differences between products. For threshold tests, adult participants detected differences in breads prepared from fortified wheat flour at 80 mg, 160 mg, and 320 mg zinc per kilogram flour, but not at 240 mg and 400 mg zinc per kilogram flour, respectively, when compared to nonfortified bread equivalents. Zinc fortification of cereal flours in the ranges of fortification that were tested does not adversely affect the acceptability of complementary foods and breads prepared from these flours. Practical Application: Fortification of staple food products is a low-cost approach to deliver additional micronutrients (including zinc) to large segments of a population. Determining the acceptability of products fortified with zinc is an important step in the development of zinc fortification programs.  相似文献   

5.
Fiber in 12 types of breads was tested for effect on blood and liver lipid levels in normolipidemic young rats. Breads provided the same, 4.I%, level of total, but variable levels of soluble, fiber in the diets. Over one-fifth of the total dietary fiber in corn tortillas, oatmeal bread, white bread and two multigrain breads containing vegetable powder was soluble fiber. Diet based on white bread was the only 100% bread diet; sucrose was added to the other 11 diets to equalize the content of available carbohydrates. Results showed that soluble fiber was negatively correlated with seturn cholesterol (r, ?0.38) and serum triglycerides (r, —0.36) but positively correlated with:liver cholesterol (r, 0.53); the reverse was true for three other experimental variables, namely sucrose and casein added to the diets and weight gains of the animals. This latter observation apparently negated, to some extent, the hypolipidemic effect of certain bread types tested.  相似文献   

6.
Breads in which water and milk powder were replaced with unrefined pork blood and/or cottage cheese whey were compared with commercial white bread and an "organic" whole wheat bread. Loaves were evaluated for appearance, composition and acceptance. Rat feeding studies in which the breads contributed about 10% protein to otherwise complete diets indicated no significant differences in growth performance (adjusted PER's) between commercial and "organic" bread. Significantly better performance was obtained for loaves containing blood, whey and blood: whey mixtures. The experimental loaves were comparable in acceptability to commercial breads, although loaf volumes were much lower and crumb texture coarser.  相似文献   

7.
BACKGROUND: Iron fortification of bread often results in sub‐optimal quality of the final product due to undesirable changes in the physical characteristics and sensory properties of the bread. In this study both the form of iron (soluble, insoluble or encapsulated) and the type of bread (wheat or gluten‐free) were varied in order to investigate the effect of iron and gluten on the product characteristics. RESULTS: The effect of iron on the quality characteristics of the breads investigated depended on iron type, but not on iron solubility. Colour, crust firmness, specific volume, cell number and uniformity as well as aroma were the attributes that were mainly affected in iron‐enriched wheat bread. In some cases, specific volume was 30% lower than that of the control sample, while cell uniformity was significantly lower, as low as 50% of the control sample in some fortified samples. In gluten‐free breads, differences between unfortified and fortified samples included colour, crust firmness, cell number, ‘moisture’ odour, metallic taste and stickiness. In some cases, the sensory scores were better for fortified samples. CONCLUSIONS: Differences due to iron fortification were less pronounced in gluten‐free compared to wheat breads. The choice of the appropriate iron compound which will not cause adverse quality changes is still a challenge. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Wine grape pomace (WGP) as a source of antioxidant dietary fiber (DF) was used to fortify baked goods, including breads, muffins, and brownies. Pinot Noir WGP (RWGP) and Pinot Grigio WGP (WWGP) substituted wheat flour at concentration of 5%, 10%, and 15% for bread, 10%, 15%, 20%, and 25% RWGP for brownies, and 5%, 10%, and 15% RWGP or 10%, 15%, and 20% WWGP for muffins. The finished products were evaluated for total phenolic content (TPC), radical scavenging activity (RSA), and total DF, as well as physicochemical and sensory properties. WGP flour blends were also tested for solvent retention capacity (SRC). The highest TPC and RSA values for bread and muffins were achieved in 15% RWGP fortified samples with TPC and RSA values of 68.32 mg gallic acid equivalent (GAE)/serving and 80.70 AAE mg/serving, respectively for bread, and 2164 mg GAE/serving and 1526 mg AAE/serving, respectively for muffins. Brownies fortified with 10% RWGP had the highest RSA value (115.52 mg AAE/serving) while the control had the highest TPC value (1152 mg GAE/serving). Breads and muffins with 15% RWGP and brownies with 25% RWGP had the highest amount of DF (6.33, 12.32, and 7.73 g/serving, respectively). Sensory evaluation concluded that there is no difference in overall liking of 5% and 10% RWGP breads and muffins or 15% and 20% WGP brownies compared to the controls. This study demonstrated that WGP is a viable functional ingredient in bakery goods to increase TPC, RSA, and DF in consumer's diets.  相似文献   

9.
The effect of particle size of whole meal rye bread on the apparent digestibility of macro-nutrients, non-starch polysaccharides (NSP) and energy, the energy value of rye NSP and on faecal weight was studied in balance experiments in seven young women. The whole meal breads were prepared from one single batch of rye milled to two different particle sizes (coarse bread: 50% of particles >2 mm, 90% >1 mm; fine bread: 86% of particles <0·5 mm, 58% <0·2 mm). Two diets containing either coarse (350 g day−1) or fine (377 g day−1) whole meal bread and a low fibre control diet were consumed for 3 weeks each in a 3×3 cross-over design. Relative to the low fibre control diet, digestibility of protein, NSP and energy was significantly lower for the diets containing the whole meal breads. Digestibility of fat was the same for all diets. Partial digestible energy value for each g of NSP from coarse and fine whole meal rye bread was calculated to be −3±7 and 1±5 kJ, respectively. There were no differences between coarse and fine whole meal rye bread in the effects on the parameters measured with the exception on faecal wet weight, which was higher for the coarse bread diet.  相似文献   

10.
Grape seed flour (GSF) from grape pomace, a waste product generated during winemaking, was explored for use in bread production due to its potential health benefits. This study evaluated the consumer acceptance and physical properties of bread, including total phenolic content (TPC), made with varying levels of GSF. Dough and breads were prepared using different levels of replacement of hard red spring wheat flour (HRS) with GSF (0 to 10 g GSF/100 g HRS) and stored for 0, 2, or 6 wk at -20 °C. Replacement of 10 g GSF/100 g HRS increased the bread TPC from 0.064 mg tannic acid/g dry weight to 4.25 mg tannic acid/g dry weight. Consumer acceptance and instrumental analyses were used to investigate changes in sensory and texture properties due to GSF replacement. Replacement above 5 g GSF/100 g HRS decreased the loaf brightness and volume, with an increase in the bread hardness and porosity. Generally, breads containing ≥ 7.5 g GSF/100 g HRS were characterized by lower consumer acceptance. A reduction in overall and bitterness acceptance was observed in bread at 10 g GSF/100 g HRS, with decreased acceptance of astringency and sweetness at 7.5 and 10 g GSF/100 g HRS. Based on these results, the replacement of 5 g GSF/100 g HRS is recommended for the production of fortified breads with acceptable physical and sensory properties and high TPC activity compared to refined bread. PRACTICAL APPLICATIONS: This study shows that grape seed flour (GSF) can be used to replace hard red spring wheat flour (HRS) in bread production, with moderate impact on the physical and sensory properties of the bread. Replacement of up to 10 g GSF/100 g HRS significantly decreased overall consumer acceptance of the bread, with lower consumer acceptance of sweetness and astringency at 7.5 and 10 g GSF/100 g HRS. Thus, a replacement value of 5 g GSF/100 g HRS is recommended for the production of fortified breads.  相似文献   

11.
Pan bread formulations based on raw wheat germ, vital wheat gluten, and enzyme-active soybean flour were optimized with the objective of developing a phytochemical-enriched designer food product with superior nutritional and sensory qualities. The objective texture values (measured as compression force, g) indicated that the test bread with 10% wheat germ addition was comparable (299.9 g) to the control (210.1 g), but the compression force was significantly higher (415.4 g) at 20% wheat germ level. With 0.5% sodium stearoyl-2-lactylate (SSL), 30 ppm potassium bromate and 50 ppm ascorbic acid, the test breads with 10 and 20% wheat germ had compression force values of 313.8 g and 367.7 g, respectively. Comparing the CIE L*a* values, the test bread samples having up to 20% wheat germ were slightly darker in crumb color than the white flour control bread, but were significantly lighter than the whole wheat flour bread. However, the addition of wheat germ increased the yellow color of bread crumb as indicated by the higher b* values of 11.4, 16.4 and 21.4, for control, 10% and 20% wheat germ breads, respectively. The physical texture and objective color measurements can be used in evaluating the quality of a phytochemical-enriched designer food (pan bread). It can be concluded that wheat germ-enriched bread can be prepared by using white flour, 20% raw wheat germ, 0.5% SSL, 30 ppm potassium bromate and 50 ppm ascorbic acid to provide consumers with a functional food.  相似文献   

12.
Fiber-supplemented breads, prepared by replacing 7.5% of the hard wheat flour with field pea, flax or sunflower hulls, wheat bran or microcrystalline cellulose, were evaluated for breadmaking characteristics and physiological effects on rats. Cellulose-supplemented dough and bread resembled the straight-grade wheat bread while pea hull and wheat bran breads were similar to whole wheat bread. Flax and sunflower hulls had adverse effects on dough mixograph properties, loaf volume and crumb characteristics while sunflower hulls also contributed grittiness and aftertaste in taste panel evaluations. The fiber-supplemented breads, when fed to weanling rats, gave similar feed consumptions, weight gains and serum cholesterol levels as rats fed the whole wheat bread. Pea hulls increased daily fecal weight and, with coarse sunflower hulls, decreased dry matter digestibility. Fine wheat bran and fine sunflower hulls in the bread diets were associated with low fecal weight, low fecal volume, high fecal density and high digestibility of dry matter.  相似文献   

13.
The effect of flour extraction rate, type and length of fermentation and baking conditions on relative bioavailability of zinc of five distinctly different Iranian flat breads and their unfermented doughs, was determined using weanling rats fed low (5.5 ppm) levels of dietary zinc. When breads rather than unfermented doughs were used for preparation of diets, with one exception, bioavailability of Zn significantly (P < 0.05) improved. Rats on the barbari-bread-based diet showed the highest weight gain and femur zinc content. There was no significant difference in weight gain among rats on dough-based diets. High correlation of weight gain and femur zinc with feed intake and low or no correlation with fiber or Zn:phytate molar ratio of the diets was observed.  相似文献   

14.
The effect of autoclaving on meat enhancement of dietary iron bioavailability was studied. Meat was mixed with FeSO4 or hemoglobin to obtain ratios of iron from meat to iron from FeSO4 or hemoglobin of 100:0, 75:25, 50:50, 25:75, and 0:100. One-half of each mixture (except meat:FeSO4 mixture 0:100) was autoclaved for 90 min at 15 psi. The meat mixtures were lyophilized and formulated into diets to provide approximately 35 mg Fe/kg. Hemoglobin regeneration efficiency (HRE) was determined as the percent iron gained as hemoglobin relative to the iron consumed. Heat increased the HREs of meat/hemoglobin mixtures and of hemoglobin. Heat did not affect the HRE of meat or meat/ferrous sulfate mixtures. Meat did not significantly enhance the bioavailability of total dietary iron.  相似文献   

15.
Comparative studies were conducted in this paper to investigate the effects of added dietary fiber (DF) and/or phenolic antioxidants on the properties of bread dough and finished bread. Breads were developed in the absence (control bread), or presence of apple pectin and/or fruit phenolic extracts (treated breads), and subjected to quality evaluation (attributes including color, weight, and volume) and characterization of chemical and rheological properties. Chemical analyses revealed that breads with added phenolic extracts had greater antioxidant activity and higher extractable phenolic content, than control bread and the treated breads with added apple pectin(s). The measured antioxidant activity was mainly derived from the phenolics present in bread. Storage modulus G' (elasticity) and loss modulus G″ (viscocity) of the treated bread dough with added pectin(s) only were higher than those of control dough. The G' or G″ of the treated breads incorporated with a combination of a pectin and fruit phenolic extract depended on the type of phenolic extract (that is, apple and blackcurrant extracts behaved differently from kiwifruit extract). The G' and G″ at the final baking step were higher than those of other stages, indicating an increase in cross-linking among polymeric molecules and bread particles of high molecular weight. We conclude that the added pectin and/or phenolic extract had influenced bread dough cross-linking microstructure and bread properties through being involved in the interactions with bread components such as wheat proteins during dough development and bread baking. PRACTICAL APPLICATION: Dietary fibers and phytochemicals (including phenolic antioxidants) have long been recognized as the active nutrients responsible for the health benefits of fruit and vegetables to humans. Interest in incorporating bioactive ingredients such as dietary fiber and phenolic antioxidants into popular foods like bread has grown rapidly, due to the increased consumer health awareness. The added bioactive ingredients may or may not promote the development of bread dough. This paper reports the findings associated with the properties of the functional breads enhanced with apple pectin and apple, blackcurrant, and kiwifruit phenolic extracts. Results of this paper indicate that the success of the development of such functional breads is ultimately determined by the interactions among added bioactive ingredients and other bread components.  相似文献   

16.
Raw wheat germ, known to be high in vitamin E and other phytochemicals, was used to develop pan bread formulations. The raw wheat germ used had protein, fat and ash contents of 27.88, 9.86 and 4.33%, respectively, compared with 11.35, 1.26 and 0.61% for white flour. Reduction in specific loaf volume, due to the inclusion of wheat germ, was significantly restored by using a combination of 30 ppm potassium bromate and 50 ppm ascorbic acid. At levels of 10 and 20% germ incorporation, the use of 3.0% enzyme‐active soy flour significantly improved the specific loaf volume of the test breads. In comparison with white‐flour control bread, panelists did not find any significant differences in any of the sensory attributes of the test bread samples containing up to 10% wheat germ and 0.5% sodium stearoyl‐2‐lactylate (SSL). The minerals, protein and fat content of wheat‐germ‐enriched breads, was superior to the white‐flour control bread. It can be concluded that phytochemical‐enriched pan bread with superior nutritional and sensory qualities can be produced using white flour, 20% wheat germ, 0.5% SSL, 30 ppm potassium bromate and 50 ppm ascorbic acid.  相似文献   

17.
The relative bioavailability of iron from soy flour (SF), freeze-dried soy beverage (SB) and soy concentrate (SC) was determined utilizing a hemoglobin repletion bioassay. Weanling male rats were fed a low iron depletion diet (3.5 ppm Fe) for 4 wk. For the next 2 wk groups of rats were fed repletion diets containing 0, 6, 12, or 18 ppm added iron from ferrous sulfate, SF, SB, or SC. Slope ratio analysis revealed that the relative iron bioavailabilities from SC (92%) and SF (81%) were not different from the reference standard, ferrous sulfate added to a casein-based diet, whereas that from SB (66%) was significantly less (P<0.01) than the inorganic source of iron. Analysis of results at individual iron levels suggested an iron bioavailability of SC>SF>SB.  相似文献   

18.
The effects of addition of wheat (10, 20 and 30%) and corn bran (10 and 20%) on rheological and bread making properties of flour were examined. To improve dough and bread properties, glucose oxidase (GO) and hexose oxidase (HO) (15–30 and 45 mg/kg) were used separately in each bran-wheat flour formula with L-ascorbic acid at 75 mg/kg, glucose at 0.5% and vital gluten at 9.2%. Water absorption and development time increased as the amount of wheat and corn bran increased, while dough stability, maximum resistance to extension, extensibility, energy and loaf volume decreased. Corn bran was found to be more detrimental to dough rheology and bread characteristics than wheat bran. Corn bran and wheat bran could be used at bread making up to levels of 10 and 20%, respectively. Addition of 30 mg/kg of HO in combination with constant additives was most effective in improving dough and bread characteristics and GO with its 15 mg/kg usage level followed it. Further increasing of enzyme levels led to over oxidizing of doughs and breads.

PRACTICAL APPLICATIONS


Corn bran up to 10% and wheat bran up to 20% levels can be used in bread making. To improve dough and bread quality, besides L-ascorbic acid (75 mg/kg) and vital gluten (as a percentage of added bran weight), GO (15 mg/kg) or HO (30 mg/kg) could be incorporated into wheat flour-bran mixtures. However, the amount of enzyme should be carefully chosen because when they are used above the mentioned levels, they cause overoxidation of doughs and small loaf volumes are obtained. As a conclusion; by using the corn bran, which is a by-product of the starch industry, not only could it be possible to offer healthy alternative breads which contain high amounts of dietary fiber to consumers, but it could also be possible to obtain economical value by evaluating such a by-product in the bread industry.  相似文献   

19.
Thirty 1-wk-old male Holstein calves were allotted randomly to six groups into a 3 X 2 factorial design. The control diet was skim milk, whey, tallow, vitamins, and minerals. Either Alpha-Floc or pectin was added at 5% dry matter. Supplementary iron was added at 30 and 50 ppm (dry basis). The six diets were fed for 14 wk. Calves without supplementary iron were mildly anemic at 6 wk and severely at 14 wk (7 and 5 g/dl hemoglobin). At 14 wk, both fibers had decreased blood hemoglobin in calves given supplementary iron. Feed refusal began at 8 wk with the appearance of anemia for calves unsupplemented with iron, but both Alpha-Floc and pectin decreased feed refusal. Supplementary iron practically eliminated feed refusal. Supplementary iron improved average daily gain and feed conversion, but dietary fibers had no effect. Adding Alpha-Floc and pectin to the diets reduced frequency of diarrheic feces. Mean carcass weight of calves fed supplementary iron was 11.6% higher than that of unsupplemented calves. Supplementary iron decreased liver lipids and increased glutamic oxaloacetic transaminase activity in blood plasma.  相似文献   

20.
Twenty flours from 16 different barley varieties cultivated in 1990 and 1992, and a Swedish reference flour, were fermented by Lactobacillus plantarum A1 to sour doughs. Barley breads (40% barley/60% wheat flour) from each flour type were baked with and without an admixture of barley sour dough in order to investigate how the sour dough admixture would affect the baking properties. A trained panel carried out sensory evaluation by conventional profiling on breads made from three of the barley varieties and the Swedish reference flour, made with and without sour dough admixture.

The barley varieties influenced both the sour dough properties and the properties of the barley bread. The pH of bread with sour dough ranged from 4.6 to 4.8 as compared to 5.4 to 5.6 in bread without sour dough. The acidity of the breads with sour dough ranged from 4.1 to 5.0 ml NaOH/ 10 g bread crumb as compared to 2.4 to 3.6 in breads without sour dough. In 14 of the twenty bread types an addition of sour dough lowered the bread volume. Breads with a sour dough admixture scored higher for total taste and acidulous taste than breads without sour dough. The β-glucan content of the flours had no significant influence on the sour dough or the sensory characteristics of the bread, except for the breadcrumb colour.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号