共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
结合国内某2250 mm热连轧精轧机组, 实现速度调节、机架间水调节、速度和机架间水耦合调节三种控制模式, 能够根据热连轧过程中的不同钢种和不同工况采用相适应的控制模式, 以获取最佳的控制效果. 同时, 利用二次规划优化法在线优化不同控制模式的调节量, 以满足带钢全长终轧温度的控制要求. 将多模式控制模型在线应用后, 带钢终轧温度控制偏差在±20℃以内, 连续三个月命中率为99%以上. 结果表明, 该控制模型响应速度快, 计算精度高, 能够满足不同钢种和不同工况下的终轧温度控制要求, 从而提高带钢轧制稳定性和终轧温度控制精度, 提升产品竞争力. 相似文献
6.
7.
8.
9.
通过加压冶炼、控制轧制方式获得氮质量分数为0.59%的Mn18Cr18N钢板,研究了终轧温度对高氮奥氏体钢组织和力学性能的影响。结果表明,在再结晶区轧制并且终轧温度为970 ℃的钢板,组织为奥氏体等轴晶和部分孪晶,强度较低,塑性、冲击韧性较好;终轧温度为910 ℃的钢板,大部分组织为变形奥氏体晶粒,有少量再结晶晶粒,随着终轧温度降低钢板强度升高,塑性和冲击韧性降低;在未再结晶区轧制并且终轧温度为780 ℃的钢板,组织为变形严重的奥氏体晶粒,强度最高,塑性、韧性最低。所有试验钢有晶界析出的Cr2N相,降低终轧温度和减缓轧后冷却速度,会增加Cr2N相的析出。 相似文献
10.
11.
为了推进高强钢筋工业应用,以Nb-V复合微合金化600MPa级高强钢筋为研究对象,采用高温激光共聚焦显微镜研究了加热温度对晶粒长大规律的影响,并进行了工业试制。结果表明,随着加热温度升高、保温时间延长,奥氏体晶粒尺寸增大;加热温度从1 180提高至1 270℃,保温60min,奥氏体平均晶粒尺寸从58.7提高至85.1μm。工业试制中,加热温度由1 200提高至1 270℃,珠光体比例增加,珠光体团尺寸增大,屈服强度和抗拉强度升高,伸长率下降,拉伸断口形貌由韧性断裂转变为准解理脆性断裂;当加热温度为1 200~1 250℃时,屈服强度为640~659MPa,抗拉强度为823~846MPa,强屈比为1.28~1.30,断后伸长率为16.6%~19.2%,最大力伸长率为10.6%~13.0%。 相似文献
12.
利用扫描电镜(SEM)、透射电镜(TEM)等实验方法,研究了不同回火温度对屈服强度600MPa级Fe-Mn-Nb-B系低碳贝氏体高强钢组织和性能的影响.结果表明:回火温度对屈服强度和抗拉强度均有较大影响.各回火温度下的低碳贝氏体钢性能与回火前相比,屈服强度均有不同程度的升高,而抗拉强度则均有不同程度的下降;600℃回火时屈服强度比回火前高出105MPa.随着回火温度的升高,屈服强度先上升后又略有下降并在600℃时达到最大值,抗拉强度下降明显,伸长率略有升高,屈强比升高.分析认为:回火前后力学性能的变化主要与回火后有更多弥散的尺寸在20nm以下的新的细小粒子析出以及马氏体占绝大多数的大块M/A岛的分解和发生位错多边形的回复有关. 相似文献
13.
14.
The 600MPa grade crossbeam steel with the composition of low Mn, low Si and Nb- Ti microalloyed was designed, and the microstructures and precipitates were analyzed by OM and TEM. The results show that the mechanical properties can meet the technical requirements under finishing temperature of 860?? or 830??, and the mechanical properties of coil show good stability with small fluctuation. The microstructures are mainly composed of ferrite and a small amount of pearlite. With the decrease of finishing temperature, the ferrite grains are obviously refined, and the amounts of second phase particles of size 3-60nm are increased, which increase the effect of fine grain strengthening and precipitation strengthening. The 600MPa grade Nb- Ti microalloyed highly formable crossbeam steel shows the best mechanical properties when the finish rolling temperature and coiling temperature are 830 and 600?? respectively. Meanwhile, the yield strength, tensile strength and elongation are respectively 536MPa, 612MPa and 30. 5% and the impact energy values under the temperature range of room temperature to -60?? are above 125J. 相似文献
15.
以高氢冷却工艺连退生产线为基础,以 900 MPa 级冷轧马氏体超高强钢为研究对象,研究了连续冷却相变区转变规律和连退快速冷却工艺对钢的力学性能和显微组织的影响。结果表明,连续冷却相变区由先共析铁素体转变区、贝氏体转变区和马氏体转变区组成,随着冷却速度的增加,先共析铁素体含量逐渐下降,贝氏体和马氏体含量逐渐上升,当冷却速度大于 40 ℃/s 时,不再有先共析铁素体生成;当冷却速度大于 80 ℃/s 时,则完全进入马氏体转变区。随着连退快冷工艺中冷却速度的增加,钢的屈服强度、抗拉强度和屈强比逐渐增加,断后伸长率逐渐下降。当冷却速度为 50 ℃/s 时,钢的屈服强度、抗拉强度和断后伸长率就已经达到了 900 MPa 级冷轧马氏体超高强钢的力学性能要求。 相似文献
16.
高铁转向架的服役要求其屈服强度不低于390 MPa,抗拉强度不低于510 MPa,-40 ℃低温冲击功不低于34 J,满足30年服役寿命。研究设计了一种具有高韧性、耐腐蚀和易焊接的试验钢化学成分,通过控制轧制和控制冷却方法,调整其组织和力学性能。经过拉伸试验、冲击试验、扫描电镜对试验钢的力学性能和显微组织进行了检测与分析。结果表明,390 MPa高铁转向架用耐候钢的成分设计合理,各项力学性能符合要求,其中当终轧温度为850 ℃、以7 ℃/s的冷速冷却至550 ℃时综合性能最好,屈服强度为487 MPa,抗拉强度为596 MPa,-40 ℃低温冲击功为216 J。 相似文献
17.
设计了一种低碳Mn-Mo-Nb-Cu-B系超高强度工程机械结构用钢,研究了在同种成分条件下TMCP(thermo-mechan-ical control-process)+回火与控轧+直接淬火+回火两种工艺对钢组织和性能的影响.对比分析了热处理前后钢板各项力学性能和组织的变化.结果表明,两种工艺条件下钢的屈服强度和冲击性能的变化趋势相似,经500~620℃回火1h后钢的屈服强度均有大幅度提高.控轧+直接淬火+回火得到的钢板综合性能明显优于TMCP+回火,前者在600℃回火后屈服强度仍达到1000MPa以上,同时延伸率达到18%,-40℃冲击功大于30J,而后者塑性较好但强度稍低;随回火温度的升高,控轧+直接淬火+回火工艺条件下的组织演化速度要快于TMCP+回火工艺. 相似文献
18.
为了开发并稳定600 MPa级低合金高强钢的生产工艺参数,利用连续退火模拟机对试验钢进行了连续退火试验,并通过扫描电镜和拉伸试验机研究了均热温度和过时效温度对试验钢显微组织和力学性能的影响。结果表明,随着均热温度的升高,试验钢的屈服强度和抗拉强度均逐渐减小,伸长率逐渐增大;随着过时效温度的升高,屈服强度逐渐增大,抗拉强度逐渐减小,伸长率则先增大后减小。试验钢在820 ℃均热、390 ℃过时效时,获得最优的力学性能,其中抗拉强度为627 MPa,屈服强度为493 MPa,总伸长率超过20%。此外,利用透射电镜观察到钢中存在大量的纳米尺度析出物,这些析出物对试验钢强度的提升有较大的贡献。 相似文献
19.
以低碳Nb、V、Ti、Mo和Cr合金化贝氏体钢为研究对象,在Formaster-Digital膨胀仪上测定了过冷奥氏体的静态CCT曲线;在Gleeble-1500热/力模拟机上,用膨胀法测定了奥氏体的动态CCT曲线;采用扫描电镜和透射电镜分析了贝氏体钢的室温组织演变规律.结果表明:合金元素抑制奥氏体向铁素体转变,在冷却速度大于10℃·s-1的范围内,静态CCT和动态CCT的室温组织均为贝氏体,具有较高的强度;奥氏体变形促进了贝氏体转变,贝氏体转变开始温度为610~668℃,终了温度为520~551℃. 相似文献