首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在计算机视觉应用中,基于孪生网络的跟踪算法相比于传统的目标跟踪算法在速度和精度上都有所提升,但是其受到遮挡、形变等干扰因素影响较大。基于此,本文对现有基于孪生网络的目标跟踪方法和技术所作的改进进行了总结分析,主要包括在孪生网络中引入全卷积孪生神经网络方法、引入回归方法和在线更新方法,对基于3种方法的目标跟踪算法的改进进行了综述,并详细介绍了近年来孪生网络在目标跟踪应用中的国内外研究进展和发展现状。同时,采用VOT2017和LaSOT数据集进行了实验对比,比较了多种基于孪生神经网络跟踪算法的性能。最后,对基于孪生网络的目标跟踪方法的发展趋势进行了展望。  相似文献   

2.
为了解决在目标跟踪过程中对目标跟踪不准确,导致目标跟踪丢失或漂移等情况。本文在此基础上提出基于孪生网络与注意力机制相结合的目标跟踪方法。将网络架构有原有的AlexNet网络更改为经过修改的ResNet50网络,并在网络结构中加入卷积模块注意力。该注意力机制从通道和空间两个维度计算特征图和注意力图。最后,在OTB100上对算法进行了评估,准确率比原算法有所提高。  相似文献   

3.
孪生网络跟踪算法将跟踪问题转换为相似性匹配问题引起广泛关注,然而,多数算法无法在移动端或算力不足的嵌入式设备上实现工程应用.为此,提出了一种基于孪生网络的轻量级高速跟踪算法.该算法以特征提取能力良好且参数量少的MobileNetV2作为主干网络,通过组卷积、Crop等操作进一步减少网络参数量,提高网络运行速率;通过在倒...  相似文献   

4.
在计算机视觉领域中,基于孪生网络的跟踪算法相比于传统算法提高了精度和速度,但是仍会受到目标遮挡、变形、环境变化等影响,导致孪生网络的跟踪算法的性能降低。为了深入了解基于孪生网络的单目标跟踪算法,本文对现有基于孪生网络目标跟踪算法进行了总结和分析,主要包括在孪生网络中引入注意力机制方法、超参数推理方法和模板更新方法,对这3种方法的目标跟踪算法进行了综述,详细介绍了国内外近几年基于孪生网络的算法研究和发展现状。对3个方面的代表算法采用VOT2016、VOT2017、VOT2018和OTB-2015数据集进行实验对比,获得了多种基于孪生网络的目标跟踪算法的性能。最后对基于孪生网络的目标跟踪算法进行了总结,并对未来的发展方向进行了展望。  相似文献   

5.
目前孪生网络跟踪器已经具有比较良好的表现,但是对于卷积神经网络所提取的特征仍没有较好地利用其特点,同时孪生网络通过相似性学习进行跟踪的特性使跟踪器的准确性和鲁棒性存在不足。提出了一种金字塔式特征融合的方法,根据骨干网络特征提取层不同深度具有不同侧重的特点提高网络对目标的表征能力,然后使用注意力机制对区域推荐网络(Region Proposal Network,RPN)进行增强,最终实现更精准更鲁棒的跟踪。在OTB100数据集的实验中,新提出的SiamERPN(Siamese Enhanced RPN)算法分别得到了0.668的成功率和0.876的精度,测试结果好于基线算法和其他对比算法。  相似文献   

6.
7.
为提升孪生网络视觉跟踪算法的准确性,提出一种融合多任务差异化同质型模型的孪生网络视觉跟踪算法.首先在决策层对孪生网络视觉跟踪模型与目标分割模型进行融合,然后结合多尺度搜索区域、目标上下文特征、多学习率模型更新策略进行跟踪.在标准数据集VOT、OTB、LaSOT、UAV123上进行算法评估.实验结果表明,所提算法在遮挡、...  相似文献   

8.
针对孪生网络对旋转变化目标特征表达能力不足的问题,该文提出了基于非对称卷积的孪生网络跟踪算法。首先利用卷积核的可加性构建非对称卷积核组,可以将其应用于任意卷积核大小的已有网络结构。接着在孪生网络跟踪框架下,对AlexNet的卷积模块进行替换,并在训练和跟踪阶段对网络进行分别设计。最后在网络的末端并联地添加3个非对称卷积核,分别经过相关运算后得到3个响应图,进行加权融合后选取最大值即为目标的位置。实验结果表明,相比于SiamFC,在OTB2015数据集上精度提高了8.7%,成功率提高了4.5%。  相似文献   

9.
10.
针对孪生网络跟踪算法在离线训练阶段学习被跟踪目标和其他对象的嵌入式特征,而这些特征缺少特定于目标的上下文信息,使跟踪算法的稳健性较差的问题,以SiamRPN++作为基准算法,提出了在线目标分类及自适应模板更新的孪生网络跟踪算法.首先,在离线训练阶段设计了互相关特征图监督模块,以学习更具判别力的嵌入式特征;其次,在线跟踪...  相似文献   

11.
吴非  张建林 《半导体光电》2023,44(3):422-428
基于孪生网络的跟踪器受限于孪生网络跟踪框架固有的跟踪机制和搜索区域选择机制,当目标处在被遮挡、快速运动和出视野等困难场景下时,如何稳定、鲁棒地进行目标跟踪始终是孪生网络跟踪器亟需解决的问题。为此,文章提出一种结合光流的孪生区域提名网络目标跟踪算法(GOF-SiamRPN)。通过全局光流对目标的运动趋势信息进行补充,该方法可以有效地解决在这些困难场景下的跟踪问题。在VOT2019和UAV123上的实验结果表明,相比基准方法,该算法分别取得了2.0%和1.8%的性能提升。与其他先进的跟踪器相比,该算法也取得了有竞争力的跟踪效果。  相似文献   

12.
近年来,Siamese网络由于其良好的跟踪精度和较快的跟踪速度,在视觉跟踪领域引起极大关注,但大多数Siamese网络并未考虑模型更新,从而引起跟踪错误。针对这一不足,该文提出一种基于双模板Siamese网络的视觉跟踪算法。首先,保留响应图中响应值稳定的初始帧作为基准模板R,同时使用改进的APCEs模型更新策略确定动态模板T。然后,通过对候选目标区域与2个模板匹配度结果的综合分析,对结果响应图进行融合,以得到更加准确的跟踪结果。在OTB2013和OTB2015数据集上的实验结果表明,与当前5种主流跟踪算法相比,该文算法的跟踪精度和成功率具有明显优势,不仅在尺度变化、平面内旋转、平面外旋转、遮挡、光照变化情况下具有较好的跟踪效果,而且达到了46 帧/s的跟踪速度。  相似文献   

13.
针对现有目标跟踪算法对快速运动弱目标跟踪效果不佳的问题,提出了一种时空连续的多特征融合孪生网络算法.首先以全卷积孪生网络为基本框架;其次设计了一种从粗到细结合空间信息和语义信息的鲁棒性特征来表达快速运动弱目标,并添加了特征注意力;最后采用时空信息连续性模型对整体信息进行有效的更新,从而选定最佳跟踪目标.在快速运动弱目标...  相似文献   

14.
针对一般跟踪算法不能很好地解决航拍视频下目标分辨率低、视场大、视角变化多等特殊难点,该文提出一种融合目标显著性和在线学习干扰因子的无人机(UAV)跟踪算法。通用模型预训练的深层特征无法有效地识别航拍目标,该文跟踪算法能根据反向传播梯度识别每个卷积滤波器的重要性来更好地选择目标显著性特征,以此凸显航拍目标特性。另外充分利...  相似文献   

15.
针对一般跟踪算法不能很好地解决航拍视频下目标分辨率低、视场大、视角变化多等特殊难点,该文提出一种融合目标显著性和在线学习干扰因子的无人机(UAV)跟踪算法.通用模型预训练的深层特征无法有效地识别航拍目标,该文跟踪算法能根据反向传播梯度识别每个卷积滤波器的重要性来更好地选择目标显著性特征,以此凸显航拍目标特性.另外充分利用连续视频丰富的上下文信息,通过引导目标外观模型与当前帧尽可能相似地来在线学习动态目标的干扰因子,从而实现可靠的自适应匹配跟踪.实验证明:该算法在跟踪难点更多的UAV123数据集上跟踪成功率和准确率分别比孪生网络基准算法高5.3%和3.6%,同时速度达到平均28.7帧/s,基本满足航拍目标跟踪准确性和实时性需求.  相似文献   

16.
视频目标跟踪算法综述   总被引:2,自引:6,他引:2  
介绍了视频目标跟踪算法及其研究进展,包括基于对比度分析的目标跟踪算法、基于匹配的目标跟踪算法和基于运动检测的目标跟踪算法.重点分析了目标跟踪中特征匹配、贝叶斯滤波、概率图模型和核方法的主要内容及最新进展.此外,还介绍了多特征跟踪、利用上下文信息的目标跟踪和多目标跟踪算法及其进展.  相似文献   

17.
余汉蓉  林彬  俞增林 《电光与控制》2021,28(1):15-18,32
为提高SAMF算法在复杂场景下的跟踪性能,提出了一种结合SAMF和视觉显著性的目标跟踪算法.在SAMF相关滤波跟踪框架的基础上,通过设计置信度判别策略评价SAMF跟踪结果的可靠性,当认定跟踪结果为低置信度时启用显著性检测算法对其进行修正,从而实现目标的重定位以解决遮挡等因素导致的跟踪漂移问题.实验表明,所提出的改进算法...  相似文献   

18.
权伟  陈锦雄  余南阳 《电子学报》2014,42(5):875-882
为了研究无约束环境下长时间可视跟踪问题,提出了一种在线学习多重检测的对象跟踪方法.该方法以随机蕨作为基础检测器结构,通过在线学习的方式,将目标对象的整体和局部表观,以及由场景学习中发掘的同步对象同时作为检测学习的基础数据,该检测器因而具备了对这多种对象的独立检测能力.由于其各个检测部分发挥了各自不同的作用,本文从测量的角度将检测器对这三种对象检测的结果进行融合,通过计算检测关于目标的配置概率进而确定目标位置,实现对象跟踪任务.基于真实视频序列的实验结果验证了本文方法的有效性和稳定性,以及较现有的跟踪方法在跟踪性能上的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号