首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO.  相似文献   

2.
高温下钙基吸收剂循环吸收CO2的研究进展   总被引:1,自引:0,他引:1  
钙基吸收剂的循环煅烧/碳酸化反应是煤燃烧或气化过程中捕获CO2的有效途径.本文主要介绍了不同前体对CaO循环吸收CO2性能的影响,并介绍了解决石灰石经过多次循环后吸收CO2能力急剧衰减的方法.  相似文献   

3.
Direct air capture (DAC) of CO2 has emerged as the most promising “negative carbon emission” technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g−1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2, indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.  相似文献   

4.
Amine-functionalized clover leaf-shaped Al2O3 extrudates (CA) were prepared for use as CO2 sorbent. The as-synthesized materials were characterized by N2 adsorption, XRD, SEM and elemental analysis followed by testing for CO2 capture using simulated flue gas containing 15.1% CO2. The results showed that a significant enhancement in CO2 uptake was achieved with the introduction of amines into CA materials. A remarkably high volume-based capacity of 70.1 mg/mL of sorbent of this hybrid material suggests that it can be potentially used for CO2 capture from flue gases and other stationary sources, especially those with low CO2 concentration. The novel adsorbent reported here performed well during prolonged cyclic operations of adsorption-desorption of CO2.  相似文献   

5.
The separation and sequestration of anthropogenic CO2 is one of the most effective steps to counter global warming by curtailing the excess CO2 levels in the atmosphere. However, to achieve the global climate change targets, in addition to the capture of CO2 from the point sources, complementary carbon-negative technologies that capture CO2 directly from the atmosphere are also necessary. The most crucial aspect of any CO2 capture technology is the selection of a suitable sorbent, which is the most efficient in a specific temperature, pressure, and moisture range. The urgent nature of the CO2 crisis has led to overwhelming contributions from researchers globally in terms of different sorbents, measurement techniques, reactors, and processes. Additionally, to develop a commercially viable CO2 capture technology, a detailed and holistic techno-economic analysis is also vital. In this review, we have documented the recent progress on CO2 capture studies using different solid sorbents under various operational conditions, along with the methodologies and reactors used for these studies. Furthermore, this review presents a detailed account of the industrial status of various existing CO2 capture technologies, including direct air capture and its techno-economic prospects. This review aims to provide a bird’s eye view of the status of CO2 capture research with a particular emphasis on the most recent developments in this field.  相似文献   

6.
Coal-based power plants are largest emitter of CO2 as a single sector. To use fossil fuels (including coal), CO2 capture and storage is a visible option. But large energy requirement for this process and risk associated with storage of CO2 demand alternative solutions including recycling of captured CO2. In this paper, a co-production of power and urea is proposed using coal with captured CO2. Detailed ASPEN Plus® model is developed for this plant. As shift reaction for producing H2 has significant effect on output parameters, analysis is done for two different values of shift reaction, i.e., 90 and 95 % conversion. Plant consumes substantial auxiliary power (~19 % for the base case). Auxiliary power becomes a minimum for about 25 % captured CO2 utilization for 95 % shift conversion. An economy factor is also defined to estimate the economic advantage of utilizing captured CO2. Results show that economic advantage is obtained for CO2 utilization beyond ~5 % for 95 % water gas shift reaction and it is beyond ~10 % for a 90 % shift reaction.  相似文献   

7.
Calcium-based sorbents are widely employed to reduce the acidic gases emission from combustion processes, and also have effects on trace organic pollutants formation and emission. Batch experiments were conducted to investigate the effects of calcium-based sorbents on pentachlorophenol (PCP) forming PCDDs/Fs during high temperature combustion processes. The results indicated that highly chlorinated PCDD/F homologues were the predominant dioxin products from PCP thermo decomposition, and only minor increasing of PCDDs happened when Ca/Cl ratio was lower than 1, while a major jump occurred when Ca/Cl ratio increased from 1 to 2. The CaO addition clearly promoted the production of all chlorinated dibenzo-p-dioxins homologue and 4-7DFs homologue. Comparison of total PCDD/F emission and its I-TEQ for three different calcium-based sorbents addition (CaO, CaCO3, basic fly ash) indicated that CaO and fly ash containing CaO had almost the same promotion effects on PCDDs/Fs originated from PCP, while CaCO3 inhibit PCDD/F formation greatly with inhibition efficiency up to 70%. Such effects may be partly proved by the observed clearly different micro-surface structures of their reaction residues. The mechanism of CaO on condensation and dechlorination reactions for PCP forming PCDDs and acid-base interaction were proposed to speculate the promotion effects of CaO, and the reaction precedence was used to speculate the inhibition effects of CaCO3 on PCDDs/Fs originated from PCP. The results of the present paper might be useful for the industrial application of calcium-based sorbents to control PCDD/F emission.  相似文献   

8.
CO2 capture by chemical or physical sorption and membrane separation have been the dominant fields of research within post- and pre-combustion CO2 capture from power cycles and industrial processes. Except for oxy-combustion capture applications, limited attention has been given to low-temperature capture from flue gas and synthesis gas by phase separation. This paper gives an overview of common CO2 capture conditions for a broad range of different power cycles and industrial processes. For a selected range of capture conditions, potential applications for low-temperature CO2 capture have been evaluated with respect to energy consumption and CO2 capture ratio. For all applications of low-temperature capture, specific power consumption and obtainable CO2 capture ratio are sensitive to flue-gas or synthesis-gas feed CO2 concentration. However, for certain applications such as synthesis gas from coal gasification, low-temperature capture shows promising potential and highly competitive energy figures compared to baseline technology.  相似文献   

9.
The pursuit of efficient CO2 capture materials remains an unmet challenge. Especially, meeting both high sorption capacity and fast uptake kinetics is an ongoing effort in the development of CO2 sorbents. Here, a strategy to exploit liquid-in-aerogel porous composites (LIAPCs) that allow for highly effective CO2 capture and selective CO2/N2 separation, is reported. Interestingly, the functional liquid tetraethylenepentamine (TEPA) is partially filled into the air pockets of SiO2 aerogel with left permanent porosity. Notably, the confined liquid thickness is 10.9–19.5 nm, which can be vividly probed by the atomic force microscope and rationalized by tailoring the liquid composition and amount. LIAPCs achieve high affinity between the functional liquid and solid porous counterpart, good structure integrity, and robust thermal stability. LIAPCs exhibit superb CO2 uptake capacity (5.44 mmol g−1, 75 °C, and 15 vol% CO2), fast sorption kinetics, and high amine efficiency. Furthermore, LIAPCs ensure long-term adsorption–desorption cycle stability and offer exceptional CO2/N2 selectivity both in dry and humid conditions, with a separation factor up to 1182.68 at a humidity of 1%. This approach offers the prospect of efficient CO2 capture and gas separation, shedding light on new possibilities to make the next-generation sorption materials for CO2 utilization.  相似文献   

10.
Global economic development anticipates a growth in demand of the energy sector whose supply in the coming decades will remain achieved by burning fossil fuels. The need to stabilize the CO2 atmospheric concentration requires technologies for capturing and reutilization of this greenhouse gas. Such scenario motivates feasibility analysis of power generation with post-combustion capture of CO2 from the flue gas associated with its transformation into chemical commodities. Specifically, the economic performance of an integrated NGCC with post-combustion capture and utilization is evaluated to balance aggregated revenues with energy penalty. The proposed CO2 reutilization is the production of methanol (MeOH), organic carbonates—dimethyl carbonate (DMC) and ethylene carbonate (EC), and ethylene glycol (EG). The study uses CO2 capture with MEA (monoethanolamine), including compression of the captured gas followed by its conversion to methanol and organic carbonates, and separation of products with recycle of reactants. Three scenarios were evaluated corresponding to the capture of 30, 50, and 80 % of the CO2 present in the flue gas. The comparative analysis includes definition of design premises followed by synthesis of process flowsheet, process simulation in the three scenarios, with sizing of the main pieces of process equipments for economic analysis—capital and operational expenditures (CAPEX and OPEX). Results indicated economic feasibility for the three scenarios. Furthermore, energy and mass balances showed that the emissions from energy demand to drive reactions and separations surpasses the proposed sequestration of CO2 by chemical utilization in the scenarios of 30 and 50 % of CO2 capture from NGCC emissions. In reality, CO2 accounting for cases 1 and 2 reveals a “carbon debt” while for case 3 a net positive abatement of CO2 occurs which increases process revenue by 1.7 % and reduces ROI in 1 year.  相似文献   

11.
CaO aggregate was sintered from reagent-grade lightweight CaCO3 powder by the addition of 0-20% (molar ratio) MgO and ZrO2, respectively. The results showed that the CaO derived from lightweight CaCO3 was highly sinterable and compact CaO aggregate with relative density above 96% was obtained after sintering at 1400 °C for 2 h, but further increase of compactness was restrained due to the occurrence of abnormal grain growth. The densification of the aggregate was promoted due to the behavior of oxide addition on restraining the grain growth of CaO. With increasing the amount of oxide addition, the microstructure of CaO aggregate underwent a restructuration process. Homogeneous microstructure, with well growing MgO grains occupying most of the boundary triple points of CaO grain, formed by the addition of 20% MgO. Especially when 20% ZrO2 was added, CaZrO3 layer formed around CaO grains. The slaking resistance of the aggregate was appreciably improved due to the promotion of densification, the formation of CaO solid solution (while MgO added) and the modification of microstructure.  相似文献   

12.
《工程(英文)》2017,3(2):166-170
This work uses a mathematical optimization approach to analyze and compare facilities that either capture carbon dioxide (CO2) artificially or use naturally captured CO2 in the form of lignocellulosic biomass toward the production of the same product, dimethyl ether (DME). In nature, plants capture CO2 via photosynthesis in order to grow. The design of the first process discussed here is based on a superstructure optimization approach in order to select technologies that transform lignocellulosic biomass into DME. Biomass is gasified; next, the raw syngas must be purified using reforming, scrubbing, and carbon capture technologies before it can be used to directly produce DME. Alternatively, CO2 can be captured and used to produce DME via hydrogenation. Hydrogen (H2) is produced by splitting water using solar energy. Facilities based on both photovoltaic (PV) solar or concentrated solar power (CSP) technologies have been designed; their monthly operation, which is based on solar availability, is determined using a multi-period approach. The current level of technological development gives biomass an advantage as a carbon capture technology, since both water consumption and economic parameters are in its favor. However, due to the area required for growing biomass and the total amount of water consumed (if plant growing is also accounted for), the decision to use biomass is not a straightforward one.  相似文献   

13.

Carbon Integration methods help identify the appropriate allocation of captured carbon dioxide (CO2) streams into CO2-using sinks, and are especially useful when a number of CO2 sink options are present simultaneously. The method helps identify CO2 allocation scenarios when subjected to an emission target on the CO2 overall network. Many carbon dioxide sink options are costly, and more often than not, require a high purity carbon dioxide source to satisfy the sink demand. Hence, it is imperative to effectively incorporate treatment units in such networks, to obtain high-purity CO2 streams. In fact, it has been previously reported in many studies that the most expensive step in Carbon Capture, Utilization and Sequestration (CCUS) is the treatment system. As a result, this paper focuses on reassessing the performance of carbon integration networks using a more rigorous cost model for the treatment design stage. The effect of utilizing different treatment operating conditions on the overall cost of the treatment stage of CO2 (before allocation) is first captured using a detailed cost model. Subsequently, this information is then fed into a network design problem that involves a CO2 source-sink allocation network problem, and different CO2 net capture targets within the network. For this, an enhanced treatment model that captures all necessary treatment design parameters has been utilized alongside the original model. The original carbon integration formulation has been adopted from previous work. Many of the cost items have been lumped into single parameters in the original formulation, and lack the necessary depth required to carry out the necessary investigations for this work. Hence, the treatment model introduced in this paper is more rigorous, as it accounts for important technical performance constraints on the system to be assessed. Utilizing a more detailed cost model was found to be very helpful in understanding several effects of varying parameters on the overall source-sink allocations, when subjected to different CO2 net emission reduction targets. The cost of the carbon network increases when the solvent temperatures are increased. However, there was a noticeable linear trend at lower temperatures compared to higher temperatures, where the increase became non-linear. Furthermore, it was discovered that for net capture targets of 20% and 25%, no revenue from carbon storage could be generated beyond a solvent temperature of 25 °C. Additionally, the optimal diameter of the treatment column was more responsive to changes in solvent temperature for cases with low net capture targets (below 10%), while its sensitivity decreased for higher capture targets (above 10%).

Graphical Abstract
  相似文献   

14.
Abstract

Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance.  相似文献   

15.
As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.  相似文献   

16.
The increase of warm-room gas is thought to cause the rise of atmosphere temperature, which is called the warm-room effect. Therefore, the decomposition treatment of carbon dioxide (CO2) gas is an important research subject in order to solve the global environmental problem. In this study, a high-energy plasma process was used to decompose CO2 gas as a warm-room gas, and the decomposition mechanism was clarified by varying the plasma operation conditions. The possibility of transforming of the CO2 gas to various resources was also discussed. Firstly, the performance test of the gas tunnel-type plasma jet used for decomposition of CO2 was conducted, and decomposition characteristics of CO2 gas by the gas tunnel-type plasma jet was determined under various conditions. The decomposition ratio of CO2 was about 30%, when the power input was P=8 kW, and the CO2 content in argon was 10%. Secondly, the improvement of operating conditions of the plasma jet was discussed in order to enhance its performance.  相似文献   

17.
Shi-Zhao Kang  Tan Wu  Jin Mu 《Materials Letters》2010,64(12):1404-8109
Li2ZrO3 nanoparticles containing Li6Zr2O7 were prepared by a biomimetic soft solution route and characterized with X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption. The results show that the tetragonal Li2ZrO3 nanoparticles containing monoclinic Li6Zr2O7 can be obtained using this simple method. The mean diameter of the nanoparticles is approximately 90 nm and the corresponding specific surface area is 23.7 m2 g− 1. Moreover, the Li2ZrO3 nanoparticles obtained were thermally analyzed under a CO2 flux to evaluate their CO2 capture capacity at high temperature. It was found that the as-prepared Li2ZrO3 nanoparticles would be an effective acceptor for high temperature CO2 capture.  相似文献   

18.
The reactions of CaO and Ca(OH)2 with CO2 during mechanical activation are studied by IR spectroscopy, x-ray diffraction, and thermal analysis. The results indicate that the earlier described extensive sorption of CO2 by Ca-containing silicates during grinding is not related to the formation of CaO or Ca(OH)2. Mechanical activation in CO2 converts calcium oxide to amorphous CaCO3 and calcium hydroxide to calcite, whereas Ca-containing silicates under such conditions homogeneously dissolve CO2 to form a material similar to analogous carbonate-containing silicate glasses.  相似文献   

19.
Among various clean energy technologies, one innovative option for reducing the emission of greenhouse gases (GHGs) and criteria pollutants involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from a combination of coal and sustainably sourced biomass. With a relatively pure CO2 stream as an inherent byproduct of the process, most of the resulting GHG emissions can be eliminated by simply compressing the CO2 for pipeline transport. Subsequent storage of the CO2 output in underground reservoirs can result in very low—perhaps even near-zero—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal-and-biomass-to-liquids-and-electricity (CBtLE), a system-wide sensitivity analysis was performed using the MARKet ALlocation energy model. CBtLE was found to be most competitive in scenarios with a combination of high oil prices, low CCS costs, and, unexpectedly, non-stringent carbon policies. In the scheme considered here (30 % biomass input on an energy basis and 85 % carbon capture), CBtLE fails to achieve significant market share in deep decarbonization scenarios, regardless of oil prices and CCS costs. Such facilities would likely require higher fractions of biomass feedstock and captured CO2 to successfully compete in a carbon-constrained energy system.  相似文献   

20.
We prepare the hollow carbon nanospheres (HCNs) by employing SiO2 nanospheres as hard template, 5-Hydroxymethylfurfural (HMF) as carbon precursor under hydrothermal conditions. The HCNs show uniform spherical morphology copied from SiO2 nanospheres and exhibit large cavity, thin shell structure with the surface area of 790 m2 g?1 and pore volume of 2.23 cm3 g?1. Owing to their large internal voids and high surface area, the HCNs exhibit a promising prospect for CO2 capture with the capacity of 3.04 mmol g?1 at 1.0 bar and 298 K, as well as good recyclability for CO2 after ten adsorption-desorption cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号