首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual and interacting effects of uniform flow, plane shear, and near-wall proximity on spherical droplet heat and mass transfer have been assessed for low Reynolds number conditions beyond the creeping flow regime. Validated resolved volume simulations were used to compute heat and mass transfer surface gradients of two-dimensional axisymmetric droplets and three-dimensional spherical droplets near planar wall boundaries for conditions consistent with inhalable aerosols (5 ? d ? 300 μm) in the upper respiratory tract. Results indicate that planar shear significantly impacts droplet heat and mass transfer for shear-based Reynolds numbers greater than 1, which occur for near-wall respiratory aerosols with diameters in excess of 50 μm. Wall proximity is shown to significantly enhance heat and mass transfer due to conduction and diffusion at separation distances less than five particle diameters and for small Reynolds numbers. For the Reynolds number conditions of interest, significant non-linear effects arise due to the concurrent interaction of uniform flow and shear such that linear superposition of Sherwood or Nusselt number terms is not allowable. Based on the validated numeric simulations, multivariable Sherwood and Nusselt number correlations are provided to account for individual flow characteristics and concurrent non-linear interactions of uniform flow, planar shear, and near-wall proximity. These heat and mass transfer correlations can be applied to effectively compute condensation and evaporation rates of potentially toxic or therapeutic aerosols in the upper respiratory tract, where non-uniform flow and wall proximity are expected to significantly affect droplet transport, deposition, and vapor formation.  相似文献   

2.
A discrete multicomponent (DMC) model for droplet evaporation in convective ambient is developed. Three different sets of correlations for Nusselt and Sherwood number are examined. The model is compared with experimental data for single and multicomponent droplet evaporation at different conditions and the most suitable set of correlations is selected. Having validated model, the diesel droplet evaporation under different ambient conditions and compositions is investigated. Increasing of oxygen mass fraction in N2–O2 mixture ambient from 0 to 1 first decreases and then increases the lifetime. Steam addition enhances the evaporation rate and it affects evaporation more significantly at higher temperatures. Exhaust gas recirculation (EGR) results in slight variations in droplet lifetime and its heating period.  相似文献   

3.
Heat and mass transfer phenomena in fuel sprays is a key issue in the field of the design of the combustion chambers where the fuel is injected on a liquid form. The development and validation of new physical models related to heat transfer and evaporation in sprays requires reliable experimental data. This paper reports on an experimental study of the energy budget, i.e. internal flux, evaporation flux and convective heat flux for monodisperse combusting droplets in linear stream. The evaporation flux is characterized by the measurement of the droplet size reduction by the phase Doppler technique, and the droplet mean temperature, required for the internal and convective heat flux evaluation, is determined by two-color, laser-induced fluorescence. The Nusselt and Sherwood numbers are evaluated from the heat and mass fluxes estimation, as a function of the inter-droplet distance. The results are compared to physical models available in the literature, for moving, evaporating and isolated droplets. A correction factor of the isolated droplet model, taking into account drop-drop interaction on the Sherwood and Nusselt numbers, is proposed.  相似文献   

4.
The prediction of heat and mass transfer in fuel sprays is a key issue in the design of combustors where the fuel is injected in a liquid form. The development and validation of new physical models requires reliable experimental data. This paper reports on an experimental study to characterize the Nusselt and Sherwood numbers of monodisperse droplets made of fuels having different volatilities and evaporating into flowing hot air. Simultaneous measurements of the droplet size and mean temperature allowed evaluating the heat fluxes that take part in the evaporation. The experimental Nusselt and Sherwood numbers are then compared to the case of an isolated droplet. It appears that these numbers are particularly dependent on the interactions between the droplets in a way that depends on the fuel nature.  相似文献   

5.
Experiments were performed to determine the mass transfer characteristics for evaporation from partially filled pans of distilled water recessed in the floor of a flat rectangular duct through which turbulent air flow was passed. During the course of the experiments, parametric variations were made of the Reynolds number of the air flow, the streamwise length of the pan, and the distance between the top of the pan and the water surface (hereafter referred to as the step height). For all of the operating conditions of the experiments, the measured Sherwood numbers were well correlated with the Reynolds number provided that the step height was used as the characteristic dimension. Guided by analytical considerations, a second correlation was constructed which provides Sherwood number predictions for operating conditions corresponding to pans longer than those used in the present experiments. By making use of the analogy between heat and mass transfer, it was shown how Nusselt numbers can be obtained from the Sherwood number correlations.  相似文献   

6.
The investigation of mixed convection heat and mass transfer in vertical ducts with film evaporation and condensation has been numerically examined in detail. This work is primarily focused on the effect of film evaporation and condensation along the wetted wall with constant temperature and concentration on the heat and mass transfer in rectangular vertical ducts. The numerical results, including the distributions of dimensionless axial velocity, temperature and concentration distributions, Nusselt number as well as Sherwood number are presented for moist air mixture system with different wall temperatures and aspect ratios of the rectangular ducts. The results show that the latent heat transport with film evaporation and condensation augments tremendously the heat transfer rate. Better heat transfer enhancement related with film evaporation is found for a system with a higher wall temperature.  相似文献   

7.
The air-side heat transfer and flow characteristics of cross-flow multiport slab mesochannel heat exchanger are investigated experimentally in this article. The multiport slab mesochannel heat exchanger consists of 15 finned aluminum slabs; each slab contains 68 flow channels of 1 mm circular diameter. The cold deionized water at a constant mass flow rate was forced to flow through the mesochannels, whereas the hot air at different velocities was allowed to pass through the finned passages of the heat exchanger core in cross-flow orientation. The heat transfer and fluid flow key parameters were examined in the region of the air-side Reynolds number in the range of 972–2758, with a constant water-side Reynolds number of 135. The effect of air-side Reynolds number on air-side Nusselt number was examined and a general correlation of Nusselt number with Reynolds number was obtained. The Nusselt number value was found to be higher in comparison with other research works for the corresponding Reynolds number range. The multiport mesochannel flat slab geometry has offered uniform temperature distribution into the core. This uniform temperature distribution leads to higher heat transfer over stand-alone inline flow tube bank.  相似文献   

8.
Abstract

A liquid desiccant air dehumidification system driven by heat pump was established. The performance of cross-flow dehumidifier/regenerator was experimentally investigated. The empirical correlations of Sherwood number for dehumidification/regeneration were obtained by fitting the experimental data. On the basis of the empirical correlations of Sherwood number and thermodynamics analysis of heat and mass transfer process for dehumidifier/regenerator, a cross-flow heat and mass transfer model was established. The effects of air and solution parameters on the dehumidification/regeneration performance were analyzed. The number of mass transfer units and the height-to-length ratio of the packing module were also studied. The results show that there exist optimal number of mass transfer units and height-to-length ratio in the dehumidifier/regenerator.  相似文献   

9.
固着液滴是指附着于壁面上的液滴,其蒸发行为及传热传质特性是喷雾冷却、喷墨打印等相变传热传质领域的基础问题之一。文中重点针对固着液滴蒸发过程所涉及的自身形态演变规律、气液固三相耦合传热/传质/流动特性进行了综述。结合毫微尺度固着液滴基本蒸发模式、热质传递形式、气液两相流动特征和界面输运行为,分析了液滴性质、壁面条件、气相环境条件等关键因素对固着液滴蒸发过程的内在作用机制和影响规律,提出了微纳尺度固着液滴(群)热质传递过程与机理的相关研究展望。  相似文献   

10.
The heat and mass transfer characteristics of free convection about a permeable horizontal cylinder embedded in porous media under the coupled effects of thermal and mass diffusion are numerically analyzed. The surface of the horizontal cylinder is maintained at a uniform wall temperature and uniform wall concentration. The transformed governing equations are obtained and solved by Keller box method. Numerical results for the dimensionless temperature profiles, the dimensionless concentration profiles, the Nusselt number and the Sherwood number are presented. Increasing the buoyancy ratio N and the transpiration parameter fw increases the Nusselt number and the Sherwood number. For thermally assisting flow, when Lewis number Le increases, the Nusselt (Sherwood) number decreases (increases). Whereas, for thermally opposing flow, both the Nusselt number and the Sherwood number increase with increasing the Lewis number.  相似文献   

11.
建立了一组不同搅混格架的5×5棒束通道数值计算模型,以压降值、轴向及周向Nu分布为参考,将数值计算结果与文献中实验结果进行了对比验证,均取得了良好的吻合度。对两种具有不同形状搅混翼的棒束通道进行了数值模拟,比较分析了其流动及传热特性;通过引入三个无量纲因子:涡流搅混因子、交叉流搅混因子以及湍流强度因子,对其搅混作用进行了进一步的评价和比较。  相似文献   

12.
Numerical simulation has been carried out of the fluid flow, heat and mass transfer for the developing laminar flow in polymer electrolyte membrane (PEM) fuel cell cathode and anode flow channels, respectively. Each flow channel is considered to be composed of two parallel walls, one porous (simulating electrode surface) and one non‐porous, or impermeable, wall (simulating bipolar plate surface). Various flow situations have been analyzed, and the local and the averaged friction coefficient, Nusselt number for heat transfer and Sherwood number for mass transfer are determined for various flow conditions corresponding to different stoichiometries, operating current densities and operating pressures of the cell. The effect of suction or injection (blowing) wall boundary condition has also been investigated, corresponding to the oxygen consumption in the cathode and hydrogen consumption in the anode. Correlations for the averaged friction coefficient, Nusselt and Sherwood numbers are developed, which can be useful for PEM fuel cell modeling and design calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the heat and mass transfer in a square microchannel that is heated from one side. This microchannel represents a reaction channel in a microreactor that is used to study the kinetics of the catalytic partial oxidation of methane. The microchannel is contained in a silicon wafer and is covered by a thin silicon sheet. At the top side of this sheet, heating elements are present which mimic the heat that is produced as a result of the exothermic chemical reaction. Correlations for Nusselt and Sherwood numbers as a function of the Graetz number are derived for laminar and plug flow conditions. These correlations describe the heat and mass transport at the covering top sheet of the microchannel as well as at its side and bottom walls. By means of computational fluid dynamic simulations, the laminar flow is studied. To determine an approximate laminar flow Nusselt correlation, the heat transport was solved analytically for plug flow conditions to describe the influence of changes in the thermal boundaries of the system. The laminar flow case is experimentally validated by measuring the actual temperature distribution in a 500 μm square, 3 cm long, microchannel that is covered by a 1 μm and by a 1.9 μm thick silicon sheet with heating elements and temperature sensors on top. The Nusselt and Sherwood correlations can be used to readily quantify the heat and mass transport to support kinetic studies of catalytic reactions in this type of microreactor.  相似文献   

14.
The fluid flow and conjugate heat and mass transfer in a cross-flow hollow fiber membrane contactor are investigated. The shell-and-tube like contactor is used for liquid desiccant air dehumidification, where numerous fibers are packed into the shell and air flows across the fiber bank. To overcome the difficulties in the direct modeling of the whole contactor, a representative cell, which comprises of a single fiber, a liquid solution inside the fiber, and an air stream across the fiber, is selected as the calculation domain. The air stream in the cell is surrounded by an assumed outer free surface. The equations governing the fluid flow and heat and mass transfer in the two cross-flow streams are solved together with the heat and mass diffusion equations in the membrane. The friction factor and the Nusselt and Sherwood numbers on the air and stream sides are then calculated and experimentally validated.  相似文献   

15.
A boundary layer analysis is used to investigate both heat and mass transfer characteristics of mixed convection about a wedge in saturated porous media under the coupled effects of thermal and mass diffusion. The surface of the wedge is maintained at a variable wall temperature (VWT) and variable wall concentration (VWC). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results are presented for the local Nusselt number and the local Sherwood number. Increasing the buoyancy ratio N, the exponent of wall temperature/concentration n and the wedge angle parameter λ increases the local Nusselt number and the local Sherwood number. As mixed convection parameter χ varies from 0 to 1, the local Nusselt number and the local Sherwood number decrease initially, reach a minimum in the intermediate value of χ and then increase gradually. It is apparent that the Lewis number has a pronounced effect on the local Sherwood number than it does on the local Nusselt number. Furthermore, increasing the Lewis number decreases (increases) the local heat (mass) transfer rate.  相似文献   

16.
The heat and mass transfer characteristics of the unsteady electrically conducting fluid flow past a suddenly started vertical infinite flat plate are taken into account in this paper. The radiation and heat absorption/generation effects for two distinct types of thermal boundary conditions are accounted for. Derivation of exact analytical solutions are aimed under different physical properties. The velocity, concentration and temperature profiles, skin friction coefficient, Sherwood number and Nusselt number are easily examined and discussed via the closed forms obtained. In particular, the Sherwood and Nusselt numbers are found evolve into their steady state case in the large time limit. The results obtained here may be further used to verify the validity of obtained numerical solutions for more complicated transient free convection fluid flow problems.  相似文献   

17.
A unit cylinder cell model with a body-fitted coordinate system is employed to analyze the hydrodynamics and heat transfer associated with steam condensation on a spray of equal sized water droplets. The droplets are assumed to be moving in the intermediate Reynolds number regime, Reg = O(100). The distance between neighboring droplet centers is allowed to be arbitrary in the plane of motion, but the droplets are assumed to be uniformly spaced in the plane perpendicular to the direction of motion. Furthermore, once a particular configuration of the droplets is set, the subsequent spacings between the droplet centers in that configuration are taken to remain constant during the entire condensation process. The formulation entails a simultaneous numerical solution of the quasi-steady elliptic partial differential equations that describe the flow field in both the dispersed and continuous phases in each cell. In part 1 of this study, the results for the velocity, surface pressure and drag are presented. In part II of this study, the results for the condensation induced velocities, surface shear stress, the Nusselt number and the Sherwood number are provided. In both parts of the study, the interactions between neighboring drops have been examined.  相似文献   

18.
《Applied Thermal Engineering》2007,27(14-15):2549-2558
Humidification of compressed air is important for humid air turbine cycle. In this paper, theoretical and experimental investigations are carried out to analyze and predict the humidification process in spray tower.For predicting the heat and mass transfer in the water droplet–air two-phase flow, a one-dimensional numerical model simulating the conservation of heat and mass of water and humid air was developed. The model considers the effect of droplet motion on the heat and mass transfer. Experimental data were obtained on a pressurized model spray tower at different pressures and water/air ratios, which had been adopted to validate the numerical model. Droplet diameter of the spray was measured and these data were used in the model. Predictions of outlet conditions of air and water for giving input conditions agree well with experimental data, which produces a maximal error of 7.3%. On the basis of the model, distributions of droplet velocity and volumetric heat transfer coefficient over height of the tower are predicted. The effect of droplet diameter on the characteristic performance of spray humidifier is also analyzed in the simulation.  相似文献   

19.
Heat and mass transfer mechanisms in a cross-flow parallel plate membrane-based enthalpy exchanger for heat and moisture recovery from exhaust air streams are investigated. The flow is assumed laminar and hydrodynamically fully developed, but developing in thermal and concentration boundaries. Contrary to the traditional methods to assume a uniform temperature (concentration) or a uniform heat flux (mass flux) boundary condition, in this study, the real boundary conditions on the exchanger surfaces are obtained by the numerical solution of the coupled equations that govern the transfer of momentum, thermal energy, and moisture in the two cross-flow air streams and through the membrane. The naturally formed heat and mass boundary conditions are then used to calculate the local and mean Nusselt and Sherwood numbers along the cross-flow passages, in the developing region and thereafter. A comparison was made with those results under uniform temperature (concentration) and uniform heat flux (mass flux) boundary conditions, for rectangular ducts of various aspect ratios. An experiment is done to verify the prediction of outlet moisture content.  相似文献   

20.
Double diffusive mixed convection in a horizontal channel with backward facing step is analyzed using velocity-vorticity formulation with a focus on the effect of recirculatory flow pattern on convective heat and mass transfer. The governing equations consist of vorticity transport equation with thermal and solutal buoyancy force terms, velocity Poisson equations, energy equation, and solutal concentration equation. Galerkin's weighted residual finite-element method has been employed to solve the equations for vorticity, velocity, temperature, and concentration fields in the computational domain. Test results are obtained to study the effect of thermal Grashof number (Gr T ), solutal Grashof number (Gr S ), and expansion ratio on the average Nusselt and Sherwood numbers. Results indicate that the convective heat transfer increased with increase in Gr T only when the Gr S number is in the aiding mode. The maximum local Nusselt number is always observed to be located adjacent to the downstream of the fluid reattachment point. Using the matched method of asymptotic expansions, correlations have also been developed for average Nusselt and Sherwood numbers for both cases of aiding and opposing buoyancy forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号