首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melphalan, a drug used for the treatment of breast, ovaries and a certain type of cancer in the bone marrow, was conjugated to linear methoxy poly (ethylene glycol) (M-PEG) of 2000 and 5000, Da. An ester linkage between polymer and drug was used in the coupling to yield a polymeric prodrug. Purified esters were characterized by Maldi-Tof and IR spectroscopy methods. The modification allowed overcoming the known melphalan aqueous solubility problem (0.1 µg/ml) leading us to obtain a polymer-drug bioconjugate more suitable for oral and parental administration. It was found that molecular weight of M-PEG is critical for the conjugates stability, aqueous solubility (80 times and 123 times higher aqueous solubility for M-PEG 2000 and M-PEG 5000, respectively), and hemolytic activity. The melphalan caused 100% hemolysis above the concentration 3.5 µg/ml in 1?h. whereas conjugate of M-PEG 2000 and M-PEG 5000 shows 81.3?±?0.5% and 48.8?±?1.5% hemolysis, respectively at 32 µg/ml after1?h. Further In vitro anticancer activity of melphalan and its conjugates was performed with breast cancer MCF-7 cell lines. It shows that LD50 concentration was higher 1.14 and 2 µm for M-PEG 2000 and M-PEG 5000, respectively in comparison to pure melphalan (0.74 µm). Above studies revealed improved pharmacokinetics properties upon conjugation.  相似文献   

2.
Objective: The aim of the present study was to assess the in vitro antimicrobial activities of nanoliposomal formulations loaded with vancomycin or/and rifampin against the biofilm formed by Staphylococcus epidermidis at 37?°C under aerobic condition.

Materials and methods: Liposomal formulations were prepared by dehydration-rehydration (DRV) method and characterized for size, zeta potential and encapsulation efficacy. The ability of different formulations on eradication of bacterial biofilm was assessed through optical density ratio (ODr) and the results implicate higher survival rates of S. epidermidis on biofilm. Positive control was defined as an ODr?=?1.0.

Results: The zeta potential of anionic, cationic and PEGylated liposomes was ?35?±?2, 35?±?1 and 27?±?2?mV whereas the mean sizes of these liposomal formulations were 145?±?4, 134?±?1 and 142?±?6?nm, respectively. Encapsulation efficacy of rifampin and vancomycin was more than 60% and about 25%, respectively. Cationic liposomal rifampin lowered the ODr to 0.61 and was the most effective formulations against S. epidermidis biofilm (p?Conclusion: The results of this study showed that rifampin-loaded liposomes were effective against bacterial biofilm.  相似文献   

3.
Purpose: A novel brain targeting drug delivery system based on OX26 antibody conjugation on PEGylated cationic solid lipid nanoparticles (OX26-PEG-CSLN) was prepared.

Methods: The Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody (OX26-PEG-CSLN) were prepared by emulsion evaporation–solidification at low temperature method. The immune-gold labeled OX26-PEG-CSLN was visualized by transmission electron microscopy. The mean diameter and zeta potential of OX26-PEG-CSLN, PEG-CSLN and CSLN were determined using a Zetasizer. The entrapment efficiency of OX26-PEG-CSLN, PEG-CSLN and CSLN was determined by ultrafiltration centrifugation method. And the solid-state characterization of OX26-PEG-CSLN and CSLN were analyzed by X-ray. Pharmacokinetics studies were conducted by in vivo microdialysis in rat cerebrospinal fluid.

Results: The results showed that the OX26-PEG-CSLN, PEG-CSLN and CSLN had average diameters of 47.68?±?1.65, 27.20?±?1.70 and 33.89?±?5.74?nm, Zeta potentials of ?0.533?±?0.115?mV, 11.200?±?0.500?mV and 11.080?±?1.170?mV and entrapment efficiencies of 83.03?±?0.01%, 92.90?±?3.50% and 97.83?±?0.19%, respectively. In the pharmacokinetics studies, the AUC value of OX26-PEG-CSLN was11.08-fold higher than that of the Baicalin solution (SOL) (p?p?>?0.05); the Cmax value of OX26-PEG-CSLN was 7.88-fold higher than that of SOL (p?p?Conclusion: These results demonstrated OX26-PEG-CSLN could be a promising carrier to deliver drugs across the BBB for the treatment of brain diseases.  相似文献   

4.
Objective: This work aimed to develop an alternative sustained-release thermosensitive praziquantel-loaded nanoemulsion (PZQ-NE) hydrogel for better schistosomiasis treatment.

Significance: PZQ-NE-dispersed chitosan/glycerol 2-phosphate disodium/HPMC (NE/CS/β-GP/HMPC) hydrogel was successfully prepared to improve bioavailability of PZQ.

Methods: Solubility tests and pseudo-ternary phase diagrams were applied to screen optimal oils, surfactants and co-surfactants of NE. The hydrogels were characterized for gelling time, surface exudates, rheological properties and in vitro drug release. Formulation optimization of NE/CS/β-GP/HMPC hydrogel was conducted by Box–Behnken experimental design combined with response surface methodology. In vitro cytotoxicity of hydrogel was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. The sustained-release property of PZQ in NE and optimized hydrogel was evaluated by pharmacokinetic study in rabbits.

Results: The formulation of PZQ-NE consisted of mass ratio of 12.5% capryol 90 containing PZQ (160?mg/g), 40% cremophor RH 40/tween 20 and transcutol HP (S/CoS?=?2:1), 47.5% deionized water. PZQ releasing from NE/CS/β-GP/HMPC hydrogels was best fitted to Higuchi model and governed by diffusion. Rheological investigation evidenced the themosensitive gelation of different hydrogel systems and their gel-like character at 37?°C. The optimized hydrogel formulation consisted of HPMC solution (103.69?mg/g), 3.03% (w/v) chitosan and 14.1% (w/v) β-GP showed no cytotoxicity when the addition of NE was no more than 100?mg/g. Pharmacokinetic parameters indicated that NE/CS/β-GP/HMPC hydrogel can significantly slow down drug elimination, prolong mean residence time and improve bioavailability of PZQ.

Conclusions: NE/CS/β-GP/HMPC hydrogel possessed sustained-release property and could be an alternative antischistosomal drug delivery system with improved therapeutic effect.  相似文献   

5.
Lipid-core polymeric nanocapsule suspensions containing adapalene and dapsone (AD-LCNC) were developed and incorporated in a Carbopol 940® hydrogel (AD-LCNC HG). A nanoemulsion (AD-NE), similarly prepared but omitting the polymer, was developed and also incorporated in a Carbopol 940® hydrogel (AD-NE HG) to evaluate the polymer effect. Physicochemical characteristics were evaluated. AD-LCNC suspensions containing 0.07% of dapsone and 0.025% of adapalene presented an average size of 194.9?±?0.42?nm, zeta potential of ?15?±?1.2?mV and polydispersity index of 0.12?±?0.02, using electrophoretic light scattering (n?=?3). The granulometric profiles showed unimodal size distributions for AD-LCNC suspensions, demonstrating that no microscopic population is present in the formulation. No instability phenomena were observed by multiple light-scattering analysis. Photomicrographs obtained by TEM showed homogeneous- and spherical-shaped particles. The encapsulation efficiency was 99.99% for dapsone and 100% for adapalene. The pH values for AD-LCNC suspensions were 5.1 and 7.6 for AD-LCNC HG. Formulations were classified as nonirritant in the HET-CAM test. Rheological analysis demonstrated a non-Newtonian pseudoplastic profile. The in vitro skin permeation studies showed a higher amount of adapalene in epidermis (130.52?±?25.72?ng/mg) and dermis (4.66?±?2.5?ng/mg) for AD-NE HG. The AD-LCNC HG presented higher amount of dapsone in both the skin layers (73.91?±?21.64?ng/mg in epidermis and 4.08?±?0.85?ng/mg in dermis). The assay showed significant difference between AD-LCNC HG and AD-NE HG (p?相似文献   

6.
Context: Poor aqueous solubility of artemether and lumefantrine makes it important to seek better ways of enhancing their oral delivery and bioavailability.

Objective: To formulate and carry out in vitro and anti-malarial pharmacodynamic evaluations of solidified reverse micellar solutions (SRMS)-based solid lipid microparticles (SLMs) of artemether and lumefantrine for oral delivery and improved bioavailability.

Materials and methods: Rational blends of Softisan®154 and Phospholipon®90H lipid matrices, and different concentrations of artemether and lumefantrine were used to formulate several batches of SLMs. Drug-free SLMs were also formulated. Morphology, particle size, encapsulation efficiency (EE%) and pH studies were performed. In vitro release studies were performed in alcoholic buffer, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) without enzymes. Anti-malarial pharmacodynamic studies were conducted in mice.

Results: Stable, smooth and spherical particles with sizes ranging from 4.2?±?0.02 to 9.3?±?0.8?µm were formed. EE% of 92.2–97.3% and 30.2–84.7% and pH of 3.0?±?0.02 to 4.9?±?0.12 and 3.0?±?0.02 to 5.8?±?0.05 were obtained for artemether and lumefantrine SLMs, respectively. Release of 100, 88.28 and 75.49%, as well as 63.26, 34.31 and 56.17% were recorded for artemether and lumefantrine in alcoholic buffer, SGF and SIF, respectively. Pharmacodynamic studies indicated very significant (p?Conclusion: Oral delivery and bioavailability of artemether and lumefantrine could be improved using SRMS-based SLMs.  相似文献   

7.
Context: Essential requirements for the efficacy of sunscreen agents are optimal UV absorption, high photostability and resistance against water removal.

Objective: Aim of this study was to investigate the effect of encapsulation in lipid microparticles (LMs) on the overall performance of the two most commonly used sunscreen agents, octyl methoxycinnamate (OMC) and butyl methoxydibenzoylmethane (BMDBM).

Methods: LMs loaded with OMC and BMDBM were prepared by melt emulsification and characterized by optical microscopy, UV filter content and release studies. The LMs incorporating OMC and BMDBM or the nonencapsulated sunscreen agents were introduced into a model cream (oil-in-water emulsion).

Results: No significant differences were observed between the sun protection factor (SPF) of the formulations containing the free (SPF, 9.4?±?1.9) or microencapsulated (SPF, 9.6?±?1.3) UV filters. Irradiation of the creams with a solar simulator demonstrated that the photodecomposition of OMC and BMDBM was significantly decreased by encapsulation in LMs from 55.7?±?5.3% to 46.1?±?5.1% and 36.3?±?3.9% to 20.1?±?4.7%, respectively. However, in vitro water-resistance studies showed that entrapment in the LMs significantly enhanced the sunscreen agent removal caused by watering (the losses for OMC and BMDBM were 45.1?±?6.3% and 49.2?±?8.4%, respectively), as compared to the formulation with the nonencapsulated sunscreen agents (the losses for OMC and BMDBM were 26.7?±?6.1% and 28.0?±?6.7%, respectively).

Conclusion: Incorporation in LMs can have controversial effects on UV filter efficacy. In particular, the water-resistance properties of sun-care formulations containing sunscreens loaded in LMs should be verified to assure that the photoprotective activity is maintained during usage.  相似文献   

8.
Abstract

Background: Adapalene is a widely used topical anti-acne drug; however, it has many side effects. Liposomal drug delivery can play a major role by targeting delivery to pilosebaceous units, reducing side effects and offering better patient compliance.

Objective: To prepare and evaluate adapalene-encapsulated liposomes for their physiochemical and skin permeation properties.

Methods: A liposomal formulation of adapalene was prepared by the film hydration method and characterized for shape, size, polydispersity index (PDI), encapsulation efficiency and thermal behavior by techniques such as Zetasizer®, differential scanning calorimetry and transmission electron microscopy. Stability of the liposomes was evaluated for three months at different storage conditions. In vitro skin permeation studies and confocal laser microscopy were performed to evaluate adapalene permeation in pig ear skin and hair follicles.

Results: The optimized process and formulation parameters resulted in homogeneous population of liposomes with a diameter of 86.66?±?3.5?nm in diameter and encapsulation efficiency of 97.01?±?1.84% w/w. In vitro permeation studies indicated liposomal formulation delivered more drug (6.72?±?0.83?μg/cm2) in hair follicles than gel (3.33?±?0.26?μg/cm2) and drug solution (1.62?±?0.054?μg/cm2). Drug concentration delivered to the skin layers was also enhanced compared to other two formulations. Confocal microscopy images confirmed drug penetration in the hair follicles when delivered using the liposomal formulation.

Conclusion: Adapalene was efficiently encapsulated in liposomes and led to enhanced delivery in hair follicles, the desired target site for acne.  相似文献   

9.
Periodontal disease is a chronic inflammation of gum and tissues that surround and support the teeth. Nonsteroidal anti-inflammatory drugs (NSAIDs) can be used in the treatment of periodontitis to ease swelling and inflammation. One approach of treating periodontitis is loading the NSAIDs in local drug delivery systems. Therefore, the objective of this study was to investigate the local delivery of the NSAIDs model drug ibuprofen to treat periodontitis using different types of gel formulations (hydrogel, oleogel, and bigel). Gel formulations were characterized in terms of their rheological properties (flow behavior, viscoelastic, and bioadhesive properties) using a controlled-stress rheometer. The in vitro drug release of ibuprofen from gel formulations was investigated using Franz diffusion cells. Gels exhibited more solid-like (elastic) behavior. The viscosity and viscoelastic properties were in the order of oleogel?>?bigel?>?hydrogel, respectively. In bioadhesion study, mucin dispersion/plain ibuprofen-hydrogel mixture showed a frequency-dependent interaction of ΔG’?=??31 and ΔG’?=?+?53?Pa at 1 and 10?rad/s, respectively. A strong positive interaction (ΔG’?=?+?6000 and +130,667?Pa at 1 and 10?rad/s, respectively) was found in mucin dispersion/plain ibuprofen–oleogel mixture. The extent of the negative interaction increased in mucin dispersion/plain ibuprofen-bigel mixture (ΔG’?=??59,000 and ?79,375?Pa at 1 and 10?rad/s, respectively). After 6?h, ibuprofen release from hydrogel, oleogel, and bigel was 59.5?±?2.2, 80.6?±?3.9, and 94.6?±?3.2%, respectively. Results showed that the rheological and bioadhesive properties and in vitro drug release were influenced by the type of gel formulations.  相似文献   

10.
Context: Development of solid dispersions is to improve the therapeutic efficacy by increasing the drug solubility, dissolution rate, bioavailability as well as to attain rapid onset of action.

Objective: The present research deals with the development of solid dispersions of flurbiprofen which is poorly water soluble to improve the solubility and dissolution rate using gelucires.

Materials and methods: In this study, solid dispersions were prepared following solvent evaporation method using gelucire 44/14 and gelucire 50/13 as carriers in different ratios. Then the formulations were evaluated for different physical parameters, solubility studies, DSC, FTIR studies and in vitro dissolution studies to select the best formulation that shows rapid dissolution rate and finally subjected to pharmacokinetic studies.

Results and discussion: From the in vitro dissolution study, formulation F3 showed the better improvement in solubility and dissolution rate. From the pharmacokinetic evaluation, the control tablets produced peak plasma concentration (Cmax) of 9140.84?±?614.36?ng/ml at 3?h Tmax and solid dispersion tablets showed Cmax?=?11?445.46?±?149.23?ng/ml at 2?h Tmax. The area under the curve for the control and solid dispersion tablets was 31?495.16?±?619.92 and 43?126.52?±?688.89?ng h/ml and the mean resident time was 3.99 and 3.68?h, respectively.

Conclusion: From the above results, it is concluded that the formulation of gelucire 44/14 solid dispersions is able to improve the solubility, dissolution rate as well as the absorption rate of flurbiprofen than pure form of drug.  相似文献   

11.
Background: Free radical scavengers and antioxidants, with the main focus on enhanced targeting to the skin layers, can provide protection against skin ageing.

Objective: The aim of the present study was to prepare nanoethosomal formulation of gammaoryzanol (GO), a water insoluble antioxidant, for its dermal delivery to prevent skin aging.

Methods: Nanoethosomal formulation was prepared by a modified ethanol injection method and characterized by using laser light scattering, scanning electronic microscope (SEM) and X-ray diffraction (XRD) techniques. The effects of formulation parameters on nanoparticle size, encapsulation efficiency percent (EE%) and loading capacity percent (LC%) were investigated. Antioxidant activity of GO-loaded formulation was investigated in vitro using normal African green monkey kidney fibroblast cells (Vero). The effect of control and GO-loaded nanoethosomal formulation on superoxide dismutase (SOD) and malondialdehyde (MDA) content of rat skin was also probed. Furthermore, the effect of GO-loaded nanoethosomes on skin wrinkle improvement was studied by dermoscopic and histological examination on healthy humans and UV-irradiated rats, respectively.

Results: The optimized nanoethosomal formulation showed promising characteristics including narrow size distribution 0.17?±?0.02, mean diameter of 98.9?±?0.05?nm, EE% of 97.12?±?3.62%, LC% of 13.87?±?1.36% and zeta potential value of –15.1?±?0.9?mV. The XRD results confirmed uniform drug dispersion in the nanoethosomes structure. In vitro and in vivo antioxidant studies confirmed the superior antioxidant effect of GO-loaded nanoethosomal formulation compared with control groups (blank nanoethosomes and GO suspension).

Conclusions: Nanoethosomes was a promising carrier for dermal delivery of GO and consequently had superior anti-aging effect.  相似文献   

12.
Context: Electrostatic forces have been claimed to be a mechanism for aerosol deposition in the lungs. However, the extent of its influence on aerosol performance is not clear, particularly for carrier-drug formulations.

Objectives: To prepare lactose-salbutamol powder blends, varying in blend ratio, and identify any relationships between salbutamol dose, electrostatic characteristics and in vitro aerosol performance.

Methods: Decanted lactose and micronized salbutamol sulfate was mixed to produce five blends (equivalent to 50, 100, 200, 300 and 400 µg salbutamol per 33?mg of powder). 33?±?1?mg of a blend was loaded into a Cyclohaler? and dispersed into the electrical Next Generation Impactor (eNGI) at an air flow rate of 60?L/min. This was conducted in triplicate for all five lactose-salbutamol blends.

Results: Fine particle fraction increased with salbutamol dose, from 5.89?±?1.42 to 21.35?±?2.91%. Specific charge (charge divided by mass) distributions for each blend were greatest in magnitude for the 50 µg blend and similar in magnitude between all other blends. However, in eNGI Stage 1 (>8.06?µm), specific charge decreased from 100 µg (?170.4?±?45.8 pC/µg) to 400 µg (?10.0?±?9.1 pC/µg).

Conclusions: The improvement in fine particle fraction with increased salbutamol dose was indicative of fine drug binding to high and low energy sites on the lactose carrier surface. This finding was supported by electrostatic charge results, but the aerosol charge itself was not found to influence aerosol performance by electrostatic forces.  相似文献   

13.
Current research work was conducted to synthesize Thiol modified arabinoxylan and its application in fabrication of hydrogel. Thioglycolic acid was esterified with arabinoxylan to prepare Thiolatedarabinoxylan. Appearance of peak at 2533.34?cm?1 in FTIR and thiol content showed successful thiolation. The pH-dependent Thiolatedarabinoxylan/acrylic acid (TAX/AA) hydrogels of perindopril erbumine were prepared via free-radical co-polymerization. Perindopril erbumine (PE) was employed as model drug. Different batches with different feed ratio of TAX, AA, and MBA were prepared and their influence on swelling, solvent penetration, and consequent drug release was investigated. Swelling coefficients increased with increase in pH. TAX/AA hydrogels were characterized by Fourier-transform infrared spectroscopy (FT-IR), Thermal Analysis (TA), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Dissolution studies were performed at pH 1.2 and 7.4 in which drug release showed direct correlation with TAX and AA ratio. In vivo studies showed that Cmax of TAX-co-AA based hydrogel was 81.57?±?0.35?ng/ml which was maintained for a longer time after its administration. All the results of in vivo studies were significant and TAX-co-AA based hydrogel enhances the bioavailability of perindopril erbumine.  相似文献   

14.
Context: Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature.

Objective: To investigate the effect of polymer concentration, pH, ions and temperature on the gel formation of β-glucan, a natural cell-wall polysaccharide derived from barley, with particular emphasis on two-phase system formation after addition of dextran or PEG.

Materials and methods: Oscillation viscometry was used to evaluate the gel character by measuring flow index (N), storage (G′) and loss (G″) moduli. Two-phase systems were further characterized for hardness and syringeability using a texture analyzer. Finally, in vitro release characteristics were determined using Franz diffusion cells.

Results: Oscillation viscometry revealed that only addition of dextran or PEG resulted in distinct gel formation. This was seen by a decrease in N after polymer addition. Moreover, hardness (in g) of the gels increased significantly (p?<?0.001) from 3.65?±?0.43 to 34.30?±?8.90 (dextran) and 805.80?±?5.30 (PEG) 24?h after polymer addition. In vitro release profiles showed significantly (p?<?0.05) reduced AUC0–8 h, k and percentage of drug released from two-phase systems compared to β-glucan dispersions, with the PEG system resulting in the lowest amount released over 8?h (15.1?±?1.6%).

Discussion: The unfavorable mixing enthalpy and higher water affinity of PEG resulted in the formation of a dense β-glucan gel.

Conclusion: 1.5% (w/w) β-glucan combined with PEG at a ratio of 1:3 seemed to be the most promising injectable formulation with respect to fastest gel formation, increased hardness and sustained release.  相似文献   

15.
Objective: The objective of this study (ARS-TPGS-Lipo) was to enhance the stability, encapsulation efficiency (EE), improve AUC, circulation time and liver targeting of ARS-TPGS-Lipo.

Methods: ARS-TPGS-Lipo was prepared by thin-film dispersion method and characterized by TEM. The EE, in vitro release and stability of ARS-TPGS-Lipo were detected by HPLC and UV. In addition to the safety evaluation, the pharmacokinetics and tissue distribution studies were also carried out after i.v. administration.

Results: The size, PDI, zeta potential, and EE of ARS-TPGS-Lipo were 126.7?±?9.9?nm, 0.182?±?0.016, ?10.1?±?1.43?mV, and 78.8?±?1.89%, respectively. ARS-TPGS-Lipo showed the slow-release effect in vitro release experiments. The AUC of ARS in the ARS-TPGS-Lipo group was 7.51 times higher than in the ARS group after i.v. administration and the circulation time was significantly prolonged. The tissue distribution results showed the components of artesunate and its metabolism DHA of the ARS-TPGS-Lipo group were much higher in liver than the ARS-Lipo group.

Conclusion: ARS-TPGS-Lipo was prepared successfully, which had the smaller vesicles size with a better PDI, better stability, higher EE, and slow-release. The results of safety evaluation indicated that ARS-TPGS-Lipo had no hematotoxicity and hepatorenal toxicity. The pharmacokinetic studies indicated ARS-TPGS-Lipo had higher AUC, longer circulation time and better liver targeting.  相似文献   

16.
Context: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.

Objective: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson’s drug ropinirole (RH) to the brain using polymeric nanoparticles.

Materials and methods: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration.

Results and discussion: The RH-CSNPs showed sustained release profiles for up to 18?h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210?±?0.52), followed by kidneys (6.862?±?0.62), intestine (4.862?±?0.45), and lungs (4.640?±?0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251?±?0.09 and 0.386?±?0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5?h are indicative of direct nose to brain transport, bypassing the blood–brain barrier (BBB).

Conclusion: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.  相似文献   

17.
Objective: The objective of this study was to enhance the solubility and bioavailability of Lupeol.

Methods: Utilizing a thin-film dispersion method, we prepared Lupeol-loaded PEGylated liposomes and Lupeol-loaded liposomes, which was characterized using SEM, mean diameter, PDI, zeta potential, and entrapment efficiency (EE). The EE, in vitro release, and stability of Lupeol-loaded PEGylated liposomes were detected using HPLC. In addition to the safety evaluation, the evaluation was carried out on HepG2 cells in vitro; the pharmacokinetics were carried out after i.v. in the rats.

Results: The size, PDI, zeta potential, and EE of Lupeol-loaded PEGylated liposomes and Lupeol-loaded liposomes were 126.9?nm, 0.246, ?1.97?mV, 87%; 97.23?nm, 0.25, 1.6?mV, 86.2%, respectively. Lupeol-loaded PEGylated liposomes showed the slow-release effect in vitro release experiments. Lupeol-loaded PEGylated liposomes offered significant advantages over other experimental groups in vitro studies, such as the highest inhibition rate and the highest apoptosis rate. We also found that Lupeol-loaded PEGylated liposomes blocked cells in the G2M phase. The pharmacokinetics result showed that the AUC of Lupeol-loaded PEGylated liposomes group was 3.2 times higher than free Lupeol group after i.v., the MRT and t1/2 values of Lupeol-loaded PEGylated liposomes (MRT = 6.09?h, t1/2 =12.94?h) showed improvements of 2.5 and 4.1 times compared to free Lupeol (MRT = 2.43?h, t1/2 = 3.16?h).

Conclusion: The Lupeol-loaded PEGylated liposomes have successfully solved its poor hydrophilicity, low bioavailability.  相似文献   

18.
Purpose: To develop and to validate a simple but sensitive method for determination of vitamins D3 and K1 in rat plasma.

Methods: The sample treatment included protein precipitation by cold acetonitrile, evaporation, reconstitution with methanol and filtration. The chromatography conditions included Xterra RP18 3.5?µm 4.6?×?100?mm column at ambient temperature and mobile phase consisting of methanol/water (93/7, v/v) at 0.5?mL/min flow rate. Vitamin D3 and probucol were detected at 265?nm and vitamin K1 at 239?nm. Rats were administered intravenously by 0.1?mg/kg of vitamin D3 or K1 and the blood samples were withdrawn pre-administration and at pre-determined time points post-administration. The pharmacokinetic analysis was performed using a non-compartmental approach.

Results: The calibration curves in rat plasma were linear up to 5000?ng/mL for both vitamins. The limit of quantification (LOQ) was 20?ng/mL for vitamin D3 and 40?ng/mL for K1. Inter- and intra-day precision and accuracy were below 15%. The pharmacokinetic parameters of vitamin D3 following intravenous administration were: AUC0?∞?=?11323?±?1081?h?×?ng/mL, Vd?=?218?±?80?mL/kg, CL?=?8.9?±?0.8?mL/h/kg, t1/2?=?16.8?±?5?h; and of vitamin K1: AUC0?∞?=?2495?±?297?h?×?ng/mL, Vd?=?60?±24?mL/kg, CL?=?40.5?±?5.1?mL/h/kg, t1/2?=?1.1?±0.5?h.

Conclusion: The developed HPLC–UV assay is a simple and sensitive method for the determination of vitamins D3 and K1 in rat plasma. A higher dose of vitamin K1 should be used in future studies for accurate estimation of pharmacokinetic parameters. The data show the suitability of the assay for pharmacokinetic studies in rats.  相似文献   

19.
In order to improve the in vivo safety and specific delivery efficiency of the antileukemic homoharringtonine (HHT) at the targets, the long-circulating PEGylated liposomes loaded with HHT (LCLipo-HHT) were prepared. Their physical characteristics, in vitro drug release, in vivo pharmacokinetic properties and elementary toxicity were evaluated. The mean diameter of the prepared LCLipo-HHT is 75.6?±?3.2?nm and the zeta potential is ?16.9?±?2.5?mV. The entrapment efficiency of HHT in the liposomes is 69.5?±?1.7%. In pharmacokinetic experiments, an increased plasma concentration as well as blood circulation time was obtained when distearoyl phosphoethanolamine-PEG 2000 lipid was added in the formulation, which results in enhancing drug delivery efficiency. Hemolysis test, vascular irritation test and acute toxicity test were used to demonstrate toxicity of LCLipo-HHT. Compared with clinical HHT injection dosage, LCLipo-HHT indicated no vascular irritation, good hemocompatibility, as well as much better safety. Therefore, the prepared LCLipo-HHT can be used as a promising anticancer formulation for antileukemic therapy in the future.  相似文献   

20.
Abstract

It is necessary to discover a novel antitumor liposome with prolonged circulation time, high efficacy, and low cost. Here, we reported a liposomal honokiol (HNK) prepared with a new type of excipient, Kolliphor HS15, which was termed as HS15-LP-HNK. In addition, we employed PEGylated liposomal honokiol (PEG-LP-HNK) as positive control. The HS15-LP-HNK was prepared by thin-film hydration method. It was near-spherical morphology with an average size of 80.62?±?0.72?nm (PDI = 0.234?±?0.007) and a mean zeta potential of ?3.91?±?0.06?mv. In vivo studies exhibited no significant difference between HS15-LP-HNK and PEG-LP-HNK. The pharmacokinetic and biodistribution results showed that HS15-LP-HNK could improve the bioavailability and increase tumor accumulation of honokiol. Furthermore, HS15-LP-HNK could enhance antitumor efficacy of honokiol with low toxicity. In summary, HS15-LP-HNK is promising in tumor targeted drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号