共查询到20条相似文献,搜索用时 0 毫秒
1.
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions. 相似文献
2.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper. 相似文献
3.
Complete three-dimensional numerical simulations of single bubble dynamics during flow boiling conditions are carried out using the computational fluid dynamics code FLOW3D based on the volume-of-fluid method. The analyses include a numerically robust kinetic phase-change model and transient wall heat conduction. The simulation approach is calibrated by comparison with available experimental and theoretical data. It is found that the observed hydrodynamics (i.e., bubble shape, departure, and deformation) are simulated very well. The comparison with high-resolution transient temperature measurements during a heating foil experiment indicates that the modeling of the spatiotemporal heat sink distribution during bubble growth requires major attention. The simulation tool is employed for single bubble dynamics during flow boiling on a horizontal heating wall, and the agreement is excellent with published experimental data. The numerical results indicate how bulk flow velocity and wall heat transfer influence the bubble dynamics and heat transfer characteristics. 相似文献
4.
A large number of studies of bubble growth rate and departure diameter have been reported in the literature. Because of uncertainty in defining the shape of an evolving interface, empirical constants are invariably used to match the model predictions with data. This is especially true when force balance is made on a vapor bubble to determine the departure diameter. In this paper, the results of an alternate approach based on a complete numerical simulation of the process are given. Single and multiple bubbles are considered for both pool and flow boiling. The simulations are based on the solution of the conservation equations of mass, momentum, and energy for both phases. Interface shape is captured through a level set function. A comparison of bubble shape during evolution, bubble diameter at departure, and bubble growth period is made with data from well-controlled experiments. Among other variables, the effect of magnitude of gravity and contact angle is explicitly investigated. 相似文献
5.
We use the seed bubble concept for manipulating the evaporative heat transfer in a heated microchannel with smooth surfaces. Using this concept, separation of bubble nucleation and growth is obtained to simplify the heat transfer system. Not only is the temperature excursion at the boiling incipience eliminated, but also the heat transfer system displays well-ordered and repeated flow characteristics. The heat transfer rates and wall temperatures can be controlled through adjusting the seed bubble frequency. The method provides a thermal management solution for microsystems and a tool for the study of the intricate flow and heat transfer. 相似文献
6.
对R290制冷剂在微细通道内的流动沸腾换热特性进行了实验研究。研究管径分别为1和2 mm,热流密度为20~65 k W/m~2,质量流率为100~200 kg/m~2·s,饱和温度为15和25℃,干度范围为0.1~0.9。通过实验数据分析管径、热流密度、质量流率、饱和温度对流动沸腾换热的影响。结果表明:随着管径的下降,换热系数呈现出大幅上升的趋势,其平均增幅为31%;随着热流密度的上升,换热系数呈现出大幅上升的趋势,其平均增幅达到了131%;随着质量流率的上升,换热系数呈现出小幅上升的趋势,其平均增幅为14%;随着饱和温度的上升,大部分换热系数呈现出小幅上升的趋势,其平均增幅为12.6%。 相似文献
7.
Significant efforts have recently been made to investigate flow boiling in microchannels, which is considered an effective cooling method for high-power microelectronic devices. However, a fundamental understanding of the bubble motion and flow reversal observed during flow boiling in parallel microchannels is lacking in the literature. In this study, complete numerical simulations are performed to further clarify the boiling process by using the level-set method for tracking the liquid–vapor interface which is modified to treat an immersed solid surface. The effects of contact angle, wall superheat, and the number of channels on the bubble growth, reverse flow, and heat transfer are analyzed. 相似文献
8.
At this time, a widely accepted model that can predict flow boiling heat transfer in microchannels with different fluids, geometries, and operative conditions is still missing. Depending on the working fluid, a predicting correlation can lead to accurate estimation or give rise to errors up to 50% and higher. The situation is further complicated when the working fluid is a zeotropic mixture of two components, due to the additional mass transfer resistance that must be estimated. In the recent years much attention has been paid to the possible use of fluorinated propene isomers in substitution for high-global-warming-potential refrigerants. The available hydrofluoroolefins cannot cover all the air-conditioning, heat pump, and refrigeration applications when used as pure fluids because their thermodynamic properties are not suitable for all the operating conditions, and therefore some solutions may be found using blends of refrigerants, to satisfy the demand for a wide range of working conditions. The adoption of new mixtures poses the problem of how to extend the correlations developed for pure fluids to the case of flow boiling of mixtures in microchannels. In this work, a mixture of R1234ze(E) and R32 (0.5/0.5 by mass) has been considered: The local heat transfer coefficient during flow boiling of this mixture in a single microchannel with 0.96 mm diameter has been measured at a pressure of 14 bar, which corresponds to a bubble temperature of around 26°C. This flow boiling database, encompassing more than 300 experimental points at different values of mass velocity, heat flux, and vapor quality, is compared with available correlations in the literature. The introduction of a correction to account for the additional mass transfer resistance is discussed, and such correction is found to be necessary and proper to provide a correct sizing of the evaporator. 相似文献
9.
Surfaces with spatial wettability patterns have been proven to enhance heat transfer coefficient and critical heat flux in pool boiling. To understand the physical mechanism behind this phenomenon and obtain the correlation among some critical parameters (bubble departure frequency, bubble size, nucleation site density, surface tension), pool boiling experiments were conducted. A Pyrex glass with a layer of indium-tin-oxide was used as the substrate. Hydrophobic patterns will serve as nucleation sites. Experiments were conducted in deionized water under atmospheric pressure at a relatively low heat flux. The processes of nucleation, growth, and departure of individual bubbles were visualized by using a high speed camera through the bottom of the heater surface. It has been found that the patterned surface performed the best in heat transfer for subcooled pool boiling when compared with hydrophilic and hydrophobic surfaces. The nucleation site density of the biphilic surface was much higher, when compared with that of the homogeneous surface. The individual bubbles always nucleate on the edge of the hydrophobic and hydrophilic area, and then move onto the hydrophobic pattern. Most of the individual bubbles detach from the wettability patterned surface in the diameter range from 300 µm to 450 µm (around 77.3%). The bubble departure periods scatter in the range from 80 ms to 1500 ms. 相似文献
10.
采用能量方程和动量方程耦合求解的方法,开展了闪急沸腾条件下的乙醇气泡生长数值模拟研究.通过与过热水和三氟三氯乙烷气泡生长的实验数据对比,验证了数值模拟方法的准确性.在此基础上,通过改变环境压力和过热度,研究了不同初始状态下乙醇气泡半径、生长速度、生长加速度、不同的力、热边界层温差和厚度等参数随时间的变化规律.结果表明,乙醇气泡生长过程中表现出的生长特性是抑制生长的表面张力、黏性力、流动阻力和促进生长的气泡内外压差及热反馈效应相互竞争的结果.雅各比数Ja对不同阶段的气泡生长特性有较大影响,随雅各比数增大,乙醇气泡生长过渡阶段由热传递控制逐渐转变为惯性力控制;环境压力一定时,雅各比数越大,乙醇气泡在表面张力控制阶段的生长延迟时间越短,最大加速度越大,在热传递控制阶段的生长速度也越快. 相似文献
11.
This study focuses mainly on the prediction of saturated flow boiling heat transfer in microchannels. A wide range of experiments has been carried out with de-ionized water to obtain a comprehensive data set. Experiments of mass fluxes of 51–728.7 kg/m2s, wall heat fluxes of 36–221.7 kW/m2, vapor qualities of 0.01–0.69, liquid Reynolds number of 7.72–190, aspect ratios of 0.37–5.00 (with a constant hydraulic diameter of 100 µm) and hydraulic diameters of 100–250 µm (for constant aspect ratio = 1). A new correlation including the aspect ratio effect is proposed to predict the heat transfer coefficient for saturated flow boiling in microchannels. The proposed correlation shows very good predictions with an overall mean absolute error of 16.9% and 86.4%, 96.2% and 99.5% of the predicted data falling within ±30, ±40 and ±50% error bands, respectively. 相似文献
12.
ABSTRACTThis study presents an experimental exploration of flow boiling heat transfer in a spiraling radial inflow microchannel heat sink. The effect of surface wettability, fluid subcooling, and mass fluxes are considered. The design of the heat sink provides an inward radial swirl flow between parallel, coaxial disks that form a microchannel of 300 microns. The channel is heated on one side, while the opposite side is essentially adiabatic to simulate a heat sink scenario for electronics cooling. To explore the effects of varying surface wetting, experiments were conducted with two different heated surfaces. One was a clean, machined copper surface and the other was a surface coated with zinc oxide nanostructures that are superhydrophilic. During boiling, increased wettability resulted in quicker rewetting and smaller bubble departure diameter, as indicated by reduced temperature oscillations during boiling, and achieving higher maximum heat flux without dryout. The highest heat transfer coefficients were seen in fully developed boiling with low subcooling levels as a result of heat transfer being dominated by nucleate boiling. The highest heat fluxes achieved were during partial subcooled flow boiling at 300 W/cm2 with an average surface temperature of 134° Celsius. Recommendations for electronics cooling applications are also discussed. 相似文献
13.
建立了非圆形硅微通道内单相流动和换热过程的三维模型,并分别对三角形、矩形和梯形微通道中流动换热进行了数值模拟.研究发现,截面平均努塞尔数在通道入口处数值最大,然后沿流体流动方向急剧减小,直至流动充分发展时趋于恒定.固体和流体温度沿流动方向近似线性升高.换热面壁温仅沿流动方向升高,在垂直于流动方向,温度则基本保持均衡;雷诺数对微通道的流动与换热特性存在着较大的影响,雷诺数越大,其对应的努塞尔数也越大.对3种微通道的热经济性分析比较发现,三角形通道的热有效性最高. 相似文献
14.
基于以丙酮为工质的三角形截面微通道饱和沸腾传热的实验数据,通过最小二乘法对实验数据进行参数拟合,得到一组新的经验参数,结合Thome提出的预测圆形截面微通道饱和沸腾传热系数的三区模型,对微通道饱和沸腾的传热系数进行了预测。结果表明:该三区模型可以较好地预测出传热系数随着干度的变化趋势,并得到90.04%的实验值和预测值误差在30%之内,吻合度较好。 相似文献
15.
YANG Qi MIAO Jianyin ZHAO Jingquan HUANG Yanpei FU Weichun SHEN Xiaobin 《热科学学报(英文版)》2020,29(5):1333-1344
To solve the heat dissipation problem of electronic devices with high heat flux hotspots,a diamond microchannel heat sink consisting of 37 parallel triangular microchannels with channel lengths of 45 mm and hydraulic diameters of 280 μm was designed.The flow boiling heat transfer characteristics of ammonia in the microchannels were investigated under high heat fluxes of 473.9-1000.4 W/cm2.Saturated flow boiling experiments with saturation temperatures of 25℃,30℃,and 35℃ and mass fluxe... 相似文献
16.
17.
This study presents a numerical study of nanofluid condensation heat transfer inside a single horizontal smooth square tube. The numerical results are compared to previous experimental predictions, and show that the heat transfer coefficient can be improved 20% by increasing the volume fraction of Cu nanoparticles by 5% or increasing the mass flux from 80 to 110 kg/m2 s. Reducing the hydraulic diameter of the microchannel from 200 to 160 µm led to an increase in average condensation heat transfer coefficient of 10%. A new correlation estimating Nusselt number for condensation of nanofluids or pure vapor is proposed. It predicts average condensation heat transfer, with good agreement with the computed values. 相似文献
18.
气泡尺寸对气缸盖沸腾换热的影响 总被引:1,自引:0,他引:1
在应用欧拉多相流模型仿真计算气液两相流沸腾换热时,离散相的气泡尺寸常常被看作常数,而实际上往往气泡具有不同的形状和尺寸,因此研究气泡尺寸大小对仿真计算结果的影响显得至关重要.以ANSYS Workbench为仿真计算平台,在计算流体动力学模块CFX中,用气液两相流沸腾换热计算模型,对不同气泡尺寸下柴油机气缸盖与冷却水腔所组成的流固耦合传热系统进行了整场离散、整场求解,得到了冷却水腔中气液两相流流场分布特性和气缸盖温度场分布,通过与试验结果的对比分析证明了计算模型的有效性.结果表明,在气泡尺寸大小为1,mm的情况下,仿真结果更接近试验结果,并且考虑气液两相流沸腾换热能够有效地降低气缸盖火力面排气道鼻梁区的最高温度,以此降低此处的热负荷. 相似文献
19.
S. T. Tan 《Numerical Heat Transfer, Part A: Applications》2013,63(10):991-1007
It has been suggested that microchannels are very effective heat transfer devices. However, the electrical double layer (EDL) effect in microchannels is suspected to be significant. In this article, two EDL models together with Navier-Stokes equations are used to compute 3-D developing microchannel flow. The Poisson-Boltzmann model (PBM) has been shown to be a promising tool in studying the EDL effect for developed microchannel flow, with acceptable accuracy and efficiency. However, it has been reported that the assumption of Boltzmann distribution in the PBM for electric ion concentration distribution is questionable in the developing flow. The Nernst-Planck model (NPM), with its two extra partial differential equations (PDEs), to predict the ion concentration distribution has been suggested to be a more appropriate model for developing microchannel flow, but more RAM and CPU are needed as compared to the PBM. The governing equations for both models are discretized for developing rectangular microchannel flows in Cartesian coordinates. An additional source term, which is related to the electric potential resulting from the EDL effect is introduced in the conventional z-axis momentum equation as a body force, thereby modifying the flow characteristics. A finite-volume scheme is used to solve the PDEs. The results predicted by both EDL models with and without EDL effects are shown. It is concluded that the differences in heat transfer performance of a microchannel predicted using the two models are insignificant. However, the performance of the microchannel is significantly affected by the EDL effect. 相似文献
20.
Hideo Mori 《传热工程》2016,37(7-8):686-695
For the development of a high-performance heat exchanger using small channels or minichannels for air-conditioning systems, it is necessary to clarify the characteristics of vapor‐liquid two-phase flow and heat transfer of refrigerants in small-diameter tubes. In this keynote paper, the related research works that have already been performed by the author and coworkers are introduced. Based on the observations and experiments of R410A flowing in small-diameter circular and noncircular tubes with hydraulic diameter of about 1 mm, the characteristics of vapor‐liquid two-phase flow pattern and boiling heat transfer were clarified. In low quality or mass flux and low heat flux condition, in which the flow was mainly slug, the “liquid film conduction evaporation” heat transfer peculiar to small-diameter tubes prevailed and exhibited considerably good heat transfer compared to nucleate boiling and forced convection evaporation heat transfer. The effects of the tube cross-sectional shape and flow direction on the heat transfer primarily appeared in the region of the “liquid film conduction evaporation” heat transfer. A new heat transfer correlation considering all of three contributions has been developed for small circular tubes. 相似文献