首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasi-static tests of spot welded and weld-bonded joints with 1.5 mm-thick SUS304 stainless steel sheets were conducted. Joint weld diameters were measured using scanning acoustic microscopy. Fatigue tests were performed to obtain the fatigue lives of two joint types subjected to different stress levels. The equations of load-life curves were obtained by nonlinear regression using a three parameter power function. Scanning electron microscopy was used to explore fatigue failure mechanisms of the joints. The results illustrate that nugget diameters of weld-bonded joints were smaller than those of spot welded joints. Their shear strength was lower, but weld-bonded joints showed a better fatigue performance than that of spot welded joints. Two fatigue failure modes were observed via testing: eyebrow failure mode and substrate fracture.  相似文献   

2.
The need of joining methods that best meet the design requirements has led to the increased use of adhesive joints at the expense of welding, fastening and riveting. Hybrid weld-bonded joints are obtained by combining adhesive bonding with a welded joint, providing superior strength and stiffness, and higher resistance to peeling and fatigue. In the present work, an experimental and numerical study of welded, adhesive and hybrid (weld-bonded) T-peel joints under peeling loads is presented. The brittle Araldite® AV138, the moderately ductile Araldite® 2015 and the ductile Sikaforce® 7752 were the considered adhesives. An analysis of the experimental values and a comparison of these values with Finite Element Method (FEM) results in Abaqus® were carried out, which included a stress analysis in the adhesive and strength prediction by Cohesive Zone Models (CZM) considering failure simulation of both the adhesive layer and weld-nugget. It was found that the Sikaforce® 7752 performs best in the bonded and hybrid configurations. The good agreement between the experimental and numerical results enabled the validation of CZM to predict the strength of adhesive and hybrid T-peel joints, giving a basis for reducing the design time and enabling the optimization of these joints.  相似文献   

3.
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.  相似文献   

4.
A research study on the fatigue behaviour of aluminium alloy adhesive lap joints was carried out to understand the effect of surface pre-treatment and adherends thickness on the fatigue strength of adhesive joints. The adherend material used for the experimental tests was an aluminium alloy 6082-T6 in the form of thin sheets, and the adhesive used was a high strength epoxy (Araldite 420 A/B). The surface preparation included an abrasive preparation (AP joints) and sodium dichromate–sulphuric acid etch (CSA joints).A maximum fatigue strength was obtained for the CSA surface treatment with a 1.0 mm adherends’ thickness. The fastest fatigue damage was related with a high surface roughness and a high stress perpendicular to adhesive surface, which helps to promote the adhesive failure. A numerical analysis was also performed to understand the effect of the adherends thickness on the stress level. Results showed an increase of the out-of-plane peak stresses with the increase of adherends thickness.  相似文献   

5.
Almost all structural applications of adhesive joints will experience cyclic loading and in most cases this is irregular in nature, a form of loading commonly known as variable amplitude fatigue (VAF). This paper is concerned with the VAF of adhesively bonded joints and has two main parts. In the first part, results from the experimental testing of adhesively bonded single lap joints subjected to constant and variable amplitude fatigue are presented. It is seen that strength wearout of bonded joints under fatigue is non-linear and that the addition of a small number of overloads to a fatigue spectrum can greatly reduce the fatigue life. The second part of the paper looks at methods of predicting VAF. It was found that methods of predicting VAF in bonded joints based on linear damage accumulation, such as the Palmgren–Miner rule, are not appropriate and tend to over-predict fatigue life. Improved predictions of fatigue life can be made by the application of non-linear strength wearout methods with cycle mix parameters to account for load interaction effects.  相似文献   

6.
Hybrid bolted/bonded joints are used to assemble structural components, commonly made by carbon fiber reinforced plastics (CFRP), with aluminum frames. Hence, they have become common solutions in a number of modern structural applications in the industrial fields, as well as civil constructions. Unfortunately, due to the lack of understanding of the relationships between the multiple parameters of influence that characterize their mechanical performance, only limited improvement have been achieved so far over classical bonding approaches, in terms of static and fatigue strength. As a result, further studies are needed in order to better exploit the potential of hybrid bolted/bonded joints and identify optimum joint configurations. This paper describes an optimization procedure of the joints, achieved through a systematic experimental analysis of hybrid single lap aluminum–CFRP structural joints. This, analyzing the effect of overlap length, stiffness imbalance, adhesive curing as well as of size, positioning and preload of the bolt, results in a significant rise of the strength, especially in presence of high cycles fatigue loading. Also, micrographic analysis and related numerical simulations have allowed to gain a better insight into the damage mechanisms occurring during the in-service tensile loading, corroborating the highest mechanical performance of the angle-ply lay-up proposed for the CFRP adherent.  相似文献   

7.
A damage zone model for the failure analysis of adhesively bonded joints   总被引:4,自引:0,他引:4  
The design of structural adhesively bonded joints is complicated by the presence of singularities at the ends of the joint and the lack of suitable failure criteria. Literature reviews indicate that bonded joint failure typically occurs after a damage zone at the end of the joint reaches a critical size. In this paper, a damage zone model based on a critical damage zone size and strain-based failure criteria is proposed to predict the failure load of adhesively bonded joints. The proposed damage zone model correctly predicts the joint failure locus and appears to be relatively insensitive to finite element mesh refinement. Results from experimental testing of various composite and aluminium lap joints have been obtained and compared with numerical analysis. Initial numerical predictions indicate that by using the proposed damage zone model, good correlation with experimental results can be achieved. A modified version of the damage zone model is also proposed which allows the model to be implemented in a practical engineering analysis environment. It is concluded that the damage zone model can be successfully applied across a broad range of joint configurations and loading conditions.  相似文献   

8.
Experiments have been completed in order to characterize the fatigue behavior of weld-bonded aluminum 5754-O/bis-phenol-A epoxy adhesive joints subjected to 100% relative humidity at 38°C. It was found that the presence of water vapor at elevated temperature decreases the fatigue strength of weld-bonded joints by as much as 33% at 5 × 106 cycles. Optical microscopy, scanning electron microscopy, dynamic mechanical analysis, and tensile testing of fatigued specimens and exposed bulk adhesive revealed that fatigue strength degradation is mainly due to the plasticization and micro-cracking of adhesive by the water vapor.  相似文献   

9.
Experiments have been completed in order to characterize the fatigue behavior of weld-bonded aluminum 5754-O/bis-phenol-A epoxy adhesive joints subjected to 100% relative humidity at 38°C. It was found that the presence of water vapor at elevated temperature decreases the fatigue strength of weld-bonded joints by as much as 33% at 5 × 106 cycles. Optical microscopy, scanning electron microscopy, dynamic mechanical analysis, and tensile testing of fatigued specimens and exposed bulk adhesive revealed that fatigue strength degradation is mainly due to the plasticization and micro-cracking of adhesive by the water vapor.  相似文献   

10.
An experimental–computational fracture-mechanics approach for the analysis and design of structural adhesive joints under static loading is demonstrated by predicting the ultimate fracture load of cracked lap shear and single lap shear aluminum and steel joints bonded using a highly toughened epoxy adhesive. The predictions are then compared with measured values. The effects of spew fillet, adhesive thickness, and surface roughness on the quasi-static strength of the joints are also discussed. This fracture-mechanics approach is extended to characterize the fatigue threshold and crack growth behavior of a toughened epoxy adhesive system for design purposes. The effects of the mode ratio of loading, adhesive thickness, substrate modulus, spew fillet, and surface roughness on the fatigue threshold and crack growth rates are considered. A finite element model is developed to both explain the experimental results and to predict how a change in an adhesive system affects the fatigue performance of the bonded joint.  相似文献   

11.
Steel is the most important construction material for the mass production of engineered structures, especially in the transport industry. On the other hand, adhesive joints are typically used to join load-bearing components. Therefore, this work intends to investigate the stress ratio effects on the fatigue behaviour of adhesively bonded steel lap joints. S–N diagrams of fatigue tests, under constant amplitude loading, were obtained for stress ratios ranging between 0.05 and 0.7. It was observed that the fatigue life of the adhesive joints has very little dependence on the stress amplitude, indicating that only the maximum stress is important. The combination of a linear equation with a quadratic equation seems to be the best formulation to fit the experimental results. Finally, the Palmgren–Miner’s Law is accurate enough to predict the fatigue design for sequential block loadings.  相似文献   

12.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

13.
This paper uses 2D and 3D finite element models to predict the stresses within bonded and weld-bonded T-peel joints. Epoxy adhesive is modelled as a homogeneous layer providing a perfect bond between aluminium adherends. Knowledge of the critical tensile stresses enables the likely region of fatigue crack initiation to be predicted. The long term reliability and durability of a joint depend directly on its fatigue strength. This research elucidates the region of cohesive crack initiation, the subsequent direction of crack propagation and the relative duration of the different stages of fatigue crack growth. The various stages of embedded, surface and through-width fatigue growth of cohesive defects within a T-peel joint are compared. This establishes fatigue life from crack initiation to final joint fracture for typical bonded and weld-bonded T-peel joints.  相似文献   

14.
This paper presents a study of moisture absorption–desorption effects in single lap adhesive joints. Experiments were carried out to characterise the moisture uptake of the single part epoxide adhesive, FM73. Tensile testing of single lap joints manufactured from aluminium alloy 2024 T3 and O and FM73 adhesive was carried out after the joints were exposed to different conditioning environments. The experimental results revealed that the failure strength of the single lap joints with 2024 T3 adherends progressively degraded with time when conditioned at 50 °C, immersed in water. However, the joint strength almost completely recovered after moisture was desorbed. The single lap joints with 2024 O adherends showed decreased strength for 28 days of conditioning, after which strength recovered, reaching a plateau after 56 days. Again, strength almost completely recovered on desorption of moisture. The strength recovery of the joints, after desorption of moisture, showed that the degradation of the adhesive was largely reversible. Analysis of the failure surfaces revealed that the dry joints failed cohesively in the adhesive layer and that the failure path moved towards the interface after conditioning. The failure mode then reverted back to cohesive failure after moisture desorption.  相似文献   

15.
This work addresses the behaviour of double-strap repairs of carbon-epoxy laminates under high-cycle fatigue loading. Experimental static and fatigue three-point bending tests were performed considering simpler double-strap bonded joints. Numerical analyses involving a cohesive mixed-mode I+II zone model appropriate for high-cycle fatigue loading considering quasi-static and fatigue degradation in a sole damage parameter were accomplished. The numerical fatigue life prediction and normalised compliance versus number of cycles curve are in close agreement with the experimental results. The numerical model was subsequently used to assess the influence of ±5% variation of several parameters intrinsic to fatigue behaviour on the numerically obtained fatigue lives. It was concluded that the exponent parameter of the modified Paris law is the most influent one. In addition, it was concluded that a concurrent variation of ±5% of all analysed parameters can explain the experimental scatter obtained.  相似文献   

16.
An innovative approach to characterize the resistance of adhesively bonded joints to fatigue disbond propagation (FDP) is presented. A constitutive equation, known as the modified crack layer (MCL) model, is employed to extract parameters characteristic of the adhesive joint's resistance to FDP. These parameters are γ', the specific energy of damage, which reflects the fatigue disbond resistance of the adhesive joint and the dissipative characteristic of the joints, β'. Stress-controlled tension-tension fatigue experiments were conducted on lap joints fabricated from aircraft grade aluminum 2024-T3 and 3M structural adhesive. The disbond length was measured periodically along the edges of the bonded area at the four corners and the corresponding number of cycles was recorded. This is in order to calculate the disbond growth rate. The hysteresis loop was also recorded for each measurement from which both the energy release rate, J*, and the change in work, Wi, were determined. It was found that the proposed model describes the behavior of the adhesively bonded joints over the entire range of the energy release rate. Thus, the proposed model can provide a basis upon which the relationships between the microstructure and/or the processing conditions and the resistance of adhesively bonded joints to FDP can be constructed. Such relationships can guide the development of adhesively bonded joints with superior resistance to debonding and should aid in their lifetime assessment.  相似文献   

17.
预偏角对单搭接接头强度的影响   总被引:2,自引:1,他引:1  
余珊  游敏  郑小玲  李智 《弹性体》2008,18(4):11-14
研究了在被粘物搭接区顸偏转角度对钢单搭接拉伸接头剪切强度的影响,并用弹性有限元法分析了预偏角变化时单搭接接头上胶层中的应力分布情况。数值分析的结果表明:当预偏角从0°增加到12°时,结构钢单搭接接头胶层中的所有应力峰值分量均显著下降。而在所采取实验条件下,接头的剪切强度最高值出现在预偏角为6°时。因而在进一步研究预偏角对单搭接接头承载能力的作用时,应将外载作用下接头的本征偏转情况考虑在内。  相似文献   

18.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

19.
Adhesive bonding technology is being increasingly used in the assembly and repair processes of composite structures. The existence of debond flaws weakens the performance of adhesively bonded structures. This article presents the results from an investigation into the effects of debond flaws on the mechanical performance of adhesively bonded single lap joints. The experimental results show that both the load-carrying capability and the failure mode of the single lap joints vary with the location of the debond flaws. Three-dimensional progressive damage finite-element models were developed in ABAQUS to simulate the tensile behaviour of single lap joints. The simulation results agree with the experimental data. The flaws located at 1/4 lap length result in a more pronounced reduction in the load-carrying capability than those located at the edge and the middle portion of the bond region. Compared with the other two locations, the residual strength of the single lap joint with a flaw at 1/2 lap length possesses a higher value. Moreover, the effects of flaws on strength reduction are more prominent for damage propagation than damage initiation.  相似文献   

20.
In Part I [1] a fracture mechanics approach has been successfully used to examine the cyclic fatigue behaviour of adhesively-bonded joints, which consisted of aluminium-alloy or electro-galvanised (EG) steel substrates bonded using toughened-epoxy structural paste-adhesives. The adhesive systems are typical of those being considered for use, or in use, for bonding load-bearing components in the automobile industry. The results were plotted in the form of the rate of crack growth per cycle, da/dN, versus the maximum strain-energy release-rate, Gmax, applied in the fatigue cycle, using logarithmic axes. In Part II [2] the mechanisms of failure were considered, particularly the mechanisms of environmental attack. The present paper, Part III, discusses the use of the relationship between da/dN and Gmax, which can be obtained in a relatively short timescale, to predict the fatigue lifetime of (uncracked) single-overlap joints cyclically loaded in tension. An analytical and a finite-element model have been derived to predict the number of cycles of failure, Nf, for lap joints and, particularly when the latter model was used to deduce the value of the strain-energy release-rate, G, in the lap joints, the agreement between the theoretical predictions and the experimental results is found to be very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号