首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper concerns the non-fragile guaranteed cost control for nonlinear first-order hyperbolic partial differential equations (PDEs), and the case of hyperbolic PDE systems with parameter uncertainties is also addressed. A Takagi–Sugeno (T–S) fuzzy hyperbolic PDE model is presented to exactly represent the nonlinear hyperbolic PDE system. Then, the state-feedback non-fragile controller distributed in space is designed by the parallel distributed compensation (PDC) method, and some sufficient conditions are derived in terms of spatial differential linear matrix inequalities (SDLMIs) such that the T–S fuzzy hyperbolic PDE system is asymptotically stable and the cost function keeps an upper bound. Moreover, for the nonlinear hyperbolic PDE system with parameter uncertainties, using the above-design approach, the robust non-fragile guaranteed cost control scheme is obtained. Furthermore, the finite-difference method is employed to solve the SDLMIs. Finally, a nonlinear hyperbolic PDE system is presented to illustrate the effectiveness and advantage of the developed design methodology.  相似文献   

2.
本文针对双曲型分布参数系统提出基于特征线法的模型预测控制算法. 通过特征线变换将描述分布参数模型的偏微分方程转化为常微分方程; 进而求解得到分布参数系统状态变量的解析式; 离散化后作为预测模型用于模型预测控制. 以循环流化床烟气脱硫系统中SO2浓度控制为例, 进行仿真研究, 结果表明基于特征线法的模型预测控制算法可以实现对双曲型分布参数系统的有效控制, 并且该算法的控制效果优于目前工程应用的前馈反馈 控制策略.  相似文献   

3.
本文提出一种基于UD(upper-diagonal)分解与偏差补偿结合的辨识方法,用于变量带误差(errors-in-variables,EIV)模型辨识.考虑单输入单输出(single input and single output,SISO)线性动态系统,当输入和输出含有零均值、方差未知的高斯测量白噪声时,该类系统的模型参数估计是一种典型的EIV模型辨识问题.为了获得这种EIV模型参数的无偏估计,本文先推导出最小二乘模型参数估计偏差量与输入输出噪声方差以及最小二乘损失函数与输入输出噪声方差的关系,然后采用UD分解方法递推获得模型参数估计值,再利用输入输出噪声方差估计值补偿模型参数估计偏差,以此获得模型参数的无偏估计.本文还讨论了算法实现过程中遇到的一些问题及修补方法,并通过仿真例验证了所提辨识方法的有效性.  相似文献   

4.
This paper presents a new approach for deriving a power system aggregate load area model (ALAM). In this approach, an equivalent area load model is derived to represent the load characters for a particular area load of a power system network. The Particle Swarm Optimization (PSO) method is employed to identify the unknown parameters of the generalised system, ALAM, based on the system measurement directly using a one-step scheme. Simulation studies are carried out for an IEEE 14-Bus power system and an IEEE 57-Bus power system. Simulation results show that the ALAM can represent the area load characters accurately under different operational conditions and at different power system states.  相似文献   

5.
光伏阵列的模型参数估计在光伏发电系统的仿真、输出功率预测、最大功率点跟踪等方面有重要意义。当测量数据中只含随机误差时,以加权最小二乘(WLS)为优化函数的参数估计方法有较好的辩识效果。但是当测量数据中含有显著误差时,WLS参数辩识的效果较差。为解决此问题,本文提出了一种以准加权最小二乘法(QWLS)为优化函数的参数估计方法来减小显著误差的影响,采用了赤池信息量准则(AIC)设计QWLS最优参数,将该方法应用于光伏阵列中构造模型鲁棒参数估计问题。最后将WLS和QWLS分别结合序列二次规划(SQP)算法,进行光伏阵列模型的参数估计仿真与实验测试。测试结果显示QWLS参数估计结果更准确,验证了准最小二乘法的鲁棒性与有效性。  相似文献   

6.
变正则参数方法在带噪图像保边缘恢复中的应用   总被引:3,自引:4,他引:3  
提出变正则参数的变分方法.该方法通过选取随梯度变化的自适应的正则参数,达到去噪和保持边缘的目的.通过5点格式构造出变分模型的离散解法,可以避免格林函数的繁琐计算。  相似文献   

7.
8.
高红  潘德惠 《控制与决策》1996,11(3):378-384
采用分布参数系统的模型辨识方法,建立某地区人才系统的分布参数系统模型。基于此模型,对该地区2000年的人才拥有量进行预测,提出了从1993年至2000年的各个年龄段的人才拥有量预测值。利用此模型,提出了地区人才系统的最优控制方案,为人事部门的科学决策提供了参考依据。  相似文献   

9.
This article considers the parameter estimation problems of block‐oriented nonlinear systems. By using the key term separation, the system output is represented as a linear combination of unknown parameters. We give a key term separation auxiliary model gradient‐based iterative (KT‐AM‐GI) identification algorithm and propose a key term separation auxiliary model three‐stage gradient‐based iterative (KT‐AM‐3S‐GI) identification algorithm by using the hierarchical identification principle. Meanwhile, the multiinnovation theory is used to derived the key term separation auxiliary model three‐stage multiinnovation gradient‐based iterative (KT‐AM‐3S‐MIGI) algorithm. The analysis shows that compared with the KT‐AM‐GI algorithm, the KT‐AM‐3S‐GI algorithm can improve the parameter estimation accuracy and reduce the computational burden. In addition, the KT‐AM‐3S‐MIGI can give more accurate parameter estimates than the KT‐AM‐3S‐GI algorithm and can track time‐varying parameters based on the dynamical window data. This work provides a reference for improving the identification performance of multiinput nonlinear output‐error systems or multivariable nonlinear systems. The simulation results confirm the effectiveness of the proposed algorithm.  相似文献   

10.
This paper develops a perturbation observer based sliding-mode control (POSMC) scheme for voltage source converter based high voltage direct current (VSC-HVDC) systems. The combinatorial effect of nonlinearities, parameter uncertainties, unmodelled dynamics and time-varying external disturbances is aggregated into a perturbation, which is estimated online by a sliding-mode state and perturbation observer. POSMC does not require an accurate system model and only one state measurement is needed. Moreover, a significant robustness can be provided through the real-time compensation of the perturbation. Four case studies are carried out on the VSC-HVDC system, such as active and reactive power tracking, AC bus fault, system parameter uncertainties, and weak AC grid connection. Simulation results verify its advantages over vector control and feedback linearization sliding-mode control. Then a hardware-in-the-loop (HIL) test is undertaken to validate the implementation feasibility of the proposed approach.  相似文献   

11.
Many industrial processes belong to distributed parameter systems (DPS) that have strong spatial–temporal dynamics. Modeling of DPS is difficult but essential to simulation, control and optimization. The first-principle modeling for known DPS often leads to the partial differential equation (PDE). Because it is an infinite-dimensional system, the model reduction (MR) is very necessary for real implementation. The model reduction often works with selection of basis functions (BF). Combination of different BF and MR results in different approaches. For unknown DPS, system identification is usually used to figure out unknown structure and parameters. Using various methods, different approaches are developed. Finally, a novel kernel-based approach is proposed for the complex DPS. This paper provides a brief review of different DPS modeling methods and categorizes them from the view of time–space separation.  相似文献   

12.
This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately, closed‐loop system identification is more difficult than open‐loop identification. In this paper we prove that the so‐called Hansen scheme, a technique known from linear time‐invariant systems theory for transforming closed‐loop system identification problems into open‐loop‐like problems, can be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem's parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme setups in simulation studies, and the application of the Hansen Scheme is seen to improve the identification performance.  相似文献   

13.
本文提出了双线性系统的一种小样本辨识方法。辨识步骤如下:首先从系统的零状态响应推出外部描述模型,然后通过小样本线性系统的一种有效辨识方法ESML来估计其参数,最后从被估计的外部描述模型实现成内部描述模型。仿真表明了该法的有效性。  相似文献   

14.
This article is concerned with the parameter identification of output‐error bilinear‐parameter models with colored noises from measurement data. An auxiliary model least squares‐based iterative method is developed through the overparameterization model. It examines the difficulty of estimating the overparameterized vector, which usually presents a heavy computational burden in the identification process. To overcome this drawback, a parameter separation technique is introduced and the nonlinear model is reformulated as a refined identification model through eliminating the crossmultiplying terms. In this regard, a parameter separation least squares‐based iterative (PS‐LSI) algorithm is derived by avoiding estimating the redundant parameters. On the basis of the PS‐LSI algorithm, we derive a maximum likelihood least squares‐based iterative method to further improve the numerical accuracy. The identification is dependent on the formulation of a pseudolinear regression relationship, which contains two linear prefilters constructed from the system and noise models. The performance of this proposed method is confirmed by the numerical simulations as well as direct comparisons with other existing algorithms.  相似文献   

15.
This paper presents the so-called two-stage least-squares algorithms to deal with practical identification difficulties often encountered in field testing, such as unsteady initial states, unknown load disturbances, and noise-corrupted measurement. For step and ramp responses, a general linear regression equation is derived from multiple integration of the differential system equation. Four types of pulse inputs are then considered, each of which has its specific advantage in applications and can be represented as a combination of step or ramp inputs. Based on any of these pulse responses, the algorithms are able to overcome those difficulties and yield accurate parameter estimates in a sequential manner. The resulting identification scheme provides a convenient way to give the delay estimate along with system parameters and is robust with respect to noise and model structure mismatch.  相似文献   

16.
辛斌  白永强  陈杰 《自动化学报》2012,38(3):491-496
针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable, ARMAX)的参数辨识问题提出一种两阶段辨识方法. 首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with exogenous variable, ARX),然后采用Durbin方法将移动平均部分(Moving average, MA)的参数辨识问题转换成一个长自回归模型(Long autoregressive, LAR)的参数辨识问题, 并利用MA与等价LAR的参数对应关系直接得到MA参数, 最后利用辨识出的MA参数计算出噪声方差. 与扩展最小二乘法的数值仿真比较验证了这种两阶段辨识方法的有效性.  相似文献   

17.
This article considers the parameter estimation for a special bilinear system with colored noise. Its input‐output representation is derived by eliminating the state variables in the bilinear system. Based on the input‐output representation of the bilinear system, a multiinnovation generalized extended stochastic gradient (MI‐GESG) algorithm is proposed by using the multiinnovation identification theory. Furthermore, a decomposition‐based multiinnovation (ie, hierarchical multiinnovation) generalized extended stochastic gradient identification (H‐MI‐GESG) algorithm is derived to enhance the parameter estimation accuracy by using the hierarchical identification principle, and a GESG algorithm is presented for comparison. Compared with the existing identification algorithms for the bilinear system, the proposed MI‐GESG and H‐MI‐GESG algorithms can generate more accurate parameter estimation. Finally, a simulation example is provided to verify the effectiveness of the proposed algorithms.  相似文献   

18.
This article studies discrete-time adaptive failure compensation control of systems with uncertain actuator failures, using an indirect adaptive control method. A discrete-time model of a continuous-time linear system with actuator failures is derived and its key features are clarified. A new discrete-time adaptive actuator failure compensation control scheme is developed, which consists of a total parametrisation of the system with parameter and failure uncertainties, a stable adaptive parameter estimation algorithm, and an on-line design procedure for feedback control. This work provides a new design of direct adaptive compensation of uncertain actuator failures, using an indirect adaptive control method. Such an adaptive design ensures desired closed-loop system stability and tracking properties despite uncertain actuator failures. Simulation results are presented to show the desired adaptive actuator failure compensation performance.  相似文献   

19.
This paper provides a way to optimize the overall disturbances rejection performance of the adaptive control system in the presence of unknown external disturbances.Especially,the updatable non-empty admissible model set,which is consistent to the a priori knowledge of the plant parameter and the online measurements,is computed.With the overall system performance as the criteria,the nominal model is optimally chosen within the admissible model set.The optimal nominal model is subsequently used to synthesize the optimal closed-loop controller based on the 1 design methodology.Combining the above two aspects,an optimal adaptive control scheme is proposed.Because of the consistency of the identification criteria and control object,the adaptive control scheme proposed in this paper can achieve the overall optimal disturbances rejection performance,and the effect of the interplay between the identification and control of the adaptive system can be handled effectively.In addition,the computable optimal performance is also provided.  相似文献   

20.
As the number of electric vehicles (EVs) grows, their electricity demands may have significant detrimental impacts on electric power grid when not scheduled properly. In this paper, we model an EV charging system as a cyber-physical system, and design a decentralised online EV charging scheduling algorithm for large populations of EVs, where the EVs can be highly heterogeneous and may join the charging system dynamically. The algorithm couples a clustering-based strategy that dynamically classifies heterogeneous EVs into multiple groups and a sliding-window iterative approach that schedules the charging demand for the EVs in each group in real time. Extensive simulation results demonstrate that our approach provides near-optimal solutions at significantly reduced complexity and communication overhead. It flattens the aggregated load on the power grid and reduces the costs of both the users and the utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号