首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用阶跃恢复二极管的强非线性特征和50MHz参考源,设计出一种高效率微波梳状发生器基准信号源,并通过此信号源采用谐波双混频合成法研制出低相噪、高杂散抑制的X波段跳频频率源。主要性能参数实测结果为:输出频率7.6~8.5GHz,频率跳频间隔50MHz,相位相噪≤-105dBc/Hz/1kHz、杂散抑制≤-60dBc。  相似文献   

2.
低相噪毫米波源的研制   总被引:1,自引:0,他引:1  
介绍了一种毫米波低相噪源的设计方法,采用PDRO和倍频电路方案,对本微波源的相位噪声和频率稳定度进行了分析,并简要介绍了PDRO的设计,对研制成的实物进行了测试,达到了设计要求的指标。该毫米波源的相位噪声≤-95dBc/Hz@10kHz,频率稳定度Δfout/fout≤1×10-8,杂波抑制比rs≤-75dBc。该毫米波源具有相位噪声低、体积小、Q值高、频率温度稳定性好等优点,具有广阔的应用前景。  相似文献   

3.
采用带6 位移相器功能、输出功率大于30W、增益45dB 带6 位移相器功能的C 波段固态单元GaN 功放模块, 通过高效率同轴波导径向空间功率合成方法,研制高功率高效率固态C 波段GaN 微波源,该微波源具有高频、高功率、 高效率、高热导率、高可靠、体积小、重量轻等优点。设计举例:研制一种新型大功率C 波段全固态GaN 微波源,其输 出功率(CW)1.2kW 、总效率30%、谐波抑制-54.8dBc、杂散-63.69dBc、相位噪声-94.03dBc/Hz@1kHz、移相精度 5.6o、同轴波导径向空间功率合成效率95%。  相似文献   

4.
采用直接数字频率合成(DDS)技术结合梳状谱发生器设计了一种低相噪高杂散抑制的捷变频频率源。由DDS产生的基带信号经小型化开关滤波器后与梳状谱发生器产生的多个点频信号混频,然后经过开关滤波器组滤除杂散分量后放大,最终输出所需频率的信号。介绍了DDS的原理,分析了频率源各项指标,最终完成了相噪≤-110 dBc/Hz@1 kHz、杂散抑制≤-68 dBc、频率切换时间≤150 ns的频率源设计与实现。本设计将DDS和上变频相结合,具有输出信号的高杂散抑制、低相噪、频率快速切换等优点,为雷达、电子对抗等系统的频率综合器设计提供了一种低成本、高性能的选择。  相似文献   

5.
近日,罗德与施瓦茨公司为R&S SMB100A微波信号发生器提供了谐波滤波器选件。这些滤波器可以在150MHz~40GHz的频率范围内提供高达-50dBc的谐波抑制;在小于3GHz频率时,甚至可以达到-58dBc。新的谐波滤波器可以有效地提高信号发生器产生的信号质量,从而也提高了测量精度。在测量宽带接收机时,滤  相似文献   

6.
《电信网技术》2013,(1):16-16
近日,罗德与施瓦茨公司为R&S SMB100A微波信号发生器提供了谐波滤波器选件。这些滤波器可以在150MHz~40GHz的频率范围内提供高达-50dBc的谐波抑制;在小于3GHz频率时,甚至可以达到-58dBc。  相似文献   

7.
基于0.7μm InP HBT工艺,设计了一款C波段高谐波抑制有源三倍频器MMIC。三倍频核心电路采用AB类差分级联三极管(cascode)结构,可产生丰富的奇次谐波信号,通过输出匹配网络滤出三次谐波信号并抑制其他谐波信号。输入端利用有源巴伦实现单端信号到差分信号的转换,提供较大的驱动功率同时节省面积;输出端级联缓冲放大器,提高输出功率。常温状态下,当输入驱动功率为-5 dBm时,该三倍频器在输出频率3.9~6.9 GHz范围内,输出功率大于10 dBm,偶次谐波抑制度大于33 dBc,基波抑制度大于35 dBc,五次谐波抑制度大于24 dBc。芯片供电方式为单电源+3.3 V供电,直流功耗为198 mW。  相似文献   

8.
《移动通信》2012,(24):72
罗德与施瓦茨公司(R&S)近日为R&SS MB100A微波信号发生器提供了性能更佳的谐波滤波器选件。这些滤波器可以在150MHz到40GHz的频率范围内提供高达-50dBc的谐波抑制;在小于3GHz频率时,甚至可以达到-58dBc。新的谐波滤波器可以有效地提高信号发生器产生的信号质量,从而也提高了测量精度。  相似文献   

9.
利用负阻振荡的工作原理,使用ADS和HFSS仿真软件对K波段介质振荡器进行了仿真设计,加工并进行了测试,同时设计了一个双工器,使基波和谐波分别从两个端口输出。通过实测结果可以看出,双工器很好地起到了隔离作用。介绍了介质振荡器设计的重点,阐述了双工器的工作原理,分析了介质谐振器和微带线耦合的等效电路,最后给出了介质振荡器(DRO)的实测结果:在基波输出端口,输出功率为6.75 dBm,二次谐波抑制度为23 dBc,相位噪声为-96.28 dBc/Hz@100 kHz;在谐波输出端口,输出功率为1.86 dBm,基波抑制度为23 dBc,相位噪声为-87.65 dBc/Hz@100 kHz,达到很好的分离作用,达到预期效果。  相似文献   

10.
赵嘉熠  谷一英  胡晶晶  李建  赵明山  韩秀友 《红外与激光工程》2021,50(10):20200457-1-20200457-7
为实现具有高频谱纯度、低相位噪声的宽带可调谐微波信号生成,提出并通过实验验证了一种次谐波信号调制下光注入半导体激光器结构的光电振荡器,其原理为通过利用光注入半导体激光器的单周期(P1)振荡工作状态和波长选择放大特性实现可调微波信号生成,并进一步通过在光电振荡环路中引入次谐波信号调制对系统生成微波信号的频率稳定性、边模抑制比与频谱纯度进行优化。实验结果表明,文中方案提出的光电振荡器可以生成输出功率大于5 dBm,频率调谐范围为12~18 GHz的微波信号。同时,系统生成的微波信号的3 dB带宽为100 kHz,边模抑制比可达 51 dB,且信号在频偏量为100 Hz和10 kHz处的相位噪声分别为?78 dBc/Hz和?109 dBc/Hz。此外,光电振荡器生成微波信号的频率调谐范围只受系统中使用的各类光电器件工作带宽的限制,通过采用具有更大带宽的光电器件可以实现更高频率的微波信号生成。  相似文献   

11.
李欣  周东方  孙昱 《通信技术》2009,42(12):179-181
微波功率模块(MPM)是集真空微波管技术与固态微波集成技术优点于一身的一种新兴微波功率源,具有体积小、重量轻、效率高、成本低等优点。研究了冷阴极触发管的特性及工作原理,提出了一种应用于微波功率模块中的自触发撬棒保护电路技术。它以冷阴极触发管为撬棒管,在行波管发生打火故障时,能快速释放高压电源储能电容上的能量,从而保护行波管和集成电源系统。实验结果表明该电路可以取得较好的性能,对系统可起到一定的保护作用。  相似文献   

12.
微波大功率组件微放电研究   总被引:2,自引:0,他引:2       下载免费PDF全文
结合微放电效应的产生机理,介绍了星载微波大功率组件的微放电防护设计,通过多种手段提高微波有源电路的微放电阈值电平。最终通过真空微放电试验,验证了微放电防护设计的有效性。在此基础上,给出了微波大功率组件的试验数据,该组件适用于集中式星载雷达固态发射机,输出峰值功率在500W以上,具有良好的真空环境适应性。  相似文献   

13.
A variety of solid-state devices are being developed for use in systems where they are required to produce pulses of microwave power at specified duty cycles. The design of these devices is interesting as they will be smaller and have less thermal capacity than an equivalent continuous-wave source generating the same microwave power. This size reduction is important as it can result in improved electrical efficiency and a higher frequency of operation. The author describes the application of transmission line matrix diffusion modelling to the transient thermal design of a transistor structure and compares the technique with finite difference and finite element approaches  相似文献   

14.
设计了一种采用电荷泵锁相技术的7.13~7.37GHz宽带跳频信号源,采用复杂可编程逻辑器件(CPLD)控制电荷泵锁相环(CPPLL)频综芯片ADF4108产生跳频信号,跳频带宽高达240 MHz,输出功率约10dBm,电平波动为0.7dB,杂散抑制<-70dBc,输出端采用六阶微带低通滤波器进行带外谐波抑制,二次谐波抑制<-60dBc,传输速率快,电路模块结构紧凑。实验结果表明,所设计的跳频宽带信号源具有快跳变,低相噪,低杂散,高可靠性及高稳定度等优点。  相似文献   

15.
Techniques for the design of high efficiency bipolar microwave frequency multipliers having wideband performance, high conversion gain and good spectral properties are presented. Experimental conversion gains of up to 7 dB have been attained for narrow bandwidths (≈8%) and approximately 0 dB for wideband designs (40%) at C band. Corresponding fundamental and 3rd harmonic rejections are greater than 40 dBc. Extensive modeling and computer-oriented design have been employed utilizing harmonic balance  相似文献   

16.
介绍一种Ku频段多通道抗振激励源设计,采用X频段抗振低相噪介质稳频振荡器(DRO),通过结构固连减少各部分电路在振动环境中的相对运动,保证了激励源在振动条件下的稳定性.采用二次谐波镜频抑制混频器一次变频,简化了激励源电路并实现了对本振泄漏的高抑制度和良好的边带抑制.多芯片微带混合集成设计实现了激励源的小型化.研制的样机达到了振动环境下相噪优于-97 dBc/Hz@10kHz,本振抑制大于32 dB、边带抑制大于35 dB的优良性能,验证了设计技术的有效性.  相似文献   

17.
场致发射阴极作为重要的电子源之一,在真空电子器件的发展进程中扮演了重要的角色。在与固态器件的竞争中,真空电子器件朝大功率高频方向持续发展,场致发射阴极的应用使其在器件尺寸、可靠性、功耗和工作频率等方面具备了较大的改进空间。本文综述了近年来大电流场致发射阴极技术进展,特别介绍了碳纳米管场致发射阴极的发展。试验表明在直流测试条件下,该类型场致发射阴极发射电流密度已可达到A/cm2量级,且可以实现长寿命高稳定发射,未来在场致发射阴极微波放大器、自由电子激光器和新型中子源等方面将有广泛的应用前景。  相似文献   

18.
基于中科院微电子所的AlGaN/GaN HEMT工艺研制了一个X波段高功率混合集成压控振荡器(VCO)。电路采用源端调谐的负阻型结构,主谐振腔由开路微带和短路微带并联构成,实现高Q值设计。在偏置条件为VD=20V, VG=-1.9V, ID=150mA时,VCO在中心频率8.15 GHz处输出功率达到28 dBm,效率21%,相位噪声-85 dBc/Hz@100 KHz,-128 dBc/Hz@1 MHz。调谐电压0~5V时,调谐范围50 MHz。分析了器件闪烁噪声对GaN HEMT基振荡器相位噪声性能的主导作用。测试结果显示了AlGaN/GaN HEMT工艺在高功率低噪声微波频率源中的应用前景。  相似文献   

19.
After more than five years of intensive research and development, avalanche diodes and transferred electron devices are established as useful and reliable microwave power generators. They have recently been employed increasingly in both military and commercial systems. Many manufacturers now have production capabilities for these devices, and fabrication technology has reached a sophisticated level. Volume production at relatively low cost is now feasible. Avalanche diodes and transferred electron devices now compete favorably on a cost and performance basis with vacuum tubes and solid-state harmonic generators in a wide variety of power-generation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号