首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recommender systems aim at solving the problem of information overload by selecting items (commercial products, educational assets, TV programs, etc.) that match the consumers’ interests and preferences. Recently, there have been approaches to drive the recommendations by the information stored in electronic health records, for which the traditional strategies applied in online shopping, e-learning, entertainment and other areas have several pitfalls. This paper addresses those problems by introducing a new filtering strategy, centered on the properties that characterize the items and the users. Preliminary experiments with real users have proved that this approach outperforms previous ones in terms of consumers’ satisfaction with the recommended items. The benefits are especially apparent among people with specific health concerns.  相似文献   

2.
This work presents a novel application of Sentiment Analysis in Recommender Systems by categorizing users according to the average polarity of their comments. These categories are used as attributes in Collaborative Filtering algorithms. To test this solution a new corpus of opinions on movies obtained from the Internet Movie Database (IMDb) has been generated, so both ratings and comments are available. The experiments stress the informative value of comments. By applying Sentiment Analysis approaches some Collaborative Filtering algorithms can be improved in rating prediction tasks. The results indicate that we obtain a more reliable prediction considering only the opinion text (RMSE of 1.868), than when apply similarities over the entire user community (RMSE of 2.134) and sentiment analysis can be advantageous to recommender systems.  相似文献   

3.
基于项的协同过滤在推荐系统中的应用研究   总被引:3,自引:1,他引:3  
分析基于项的协同过滤在推荐系统中应用及所存在的问题,提出了一个基于项的协同过滤改进算法,并给出了改进算法在标准数据集上的实验结果,对改进算法与原算法进行了相关性能的比较分析,证明了改进算法的有效性.最后,对研究进行了总结,指出存在的不足,提出了进一步研究的方向.  相似文献   

4.
针对目前大多推荐系统中使用的协同过滤算法都需要有显示的用户反馈的问题,提出一种在隐式反馈推荐系统中使用聚类与矩阵分解技术相结合的方法,为用户提供更好地推荐结果。其结果是由基于用户历史购买记录的隐式反馈产生的,不需任何显式反馈提供的数据。采用高维的、无参数的分裂层次聚类技术产生聚类结果,根据聚类的结果为每个用户提供高兴趣度的个性化推荐。实验结果表明,在隐式反馈的情况下该方法也能有效获得用户偏好,产生大量的高准确度推荐。  相似文献   

5.
Collaborative filtering is a widely used recommendation technique and many collaborative filtering techniques have been developed, each with its own merits and drawbacks. In this study, we apply an artificial immune network to collaborative filtering for movie recommendation. We propose new formulas in calculating the affinity between an antigen and an antibody and the affinity of an antigen to an immune network. In addition, a modified similarity estimation formula based on the Pearson correlation coefficient is also developed. A series of experiments based on MovieLens and EachMovie datasets are conducted, and the results are very encouraging.  相似文献   

6.
E-commerce systems employ recommender systems to enhance the customer loyalty and hence increasing the cross-selling of products. However, choosing appropriate similarity measure is a key to the recommender system success. Based on this measure, a set of neighbors for the current active user is formed which in turn will be used later to recommend unseen items to this active user. Pearson correlation coefficient, the most popular similarity measure for memory-based collaborative recommender system (CRS), measures how much two users are correlated. However, statistic’s literature introduced many other coefficients for matching two sets (vectors) that may perform better than Pearson correlation coefficient. This paper explores Jaccard and Dice coefficients for matching users of CRS. A more general coefficient called a Power coefficient is proposed in this paper which represents a family of coefficients. Specifically, Power coefficient gives many degrees for emphasizing on the positive matches between users. However, CRS users have positive and negative matches and therefore these coefficients have to be modified to take negative matches into consideration. Consequently, they become more suitable for CRS research. Many experiments are carried out for all the proposed variants and are compared with the traditional approaches. The experimental results show that the proposed variants outperform Pearson correlation coefficient and cosine similarity measure as they are the most common approaches for memory-based CRS.  相似文献   

7.
协同过滤是迄今为止最成功的推荐系统,它可以产生高质量的推荐,但是其性能随着客户和产品数目的增加而下降.提出了一种基于特征表的协同过滤算法,该算法首先将原始数据划分成若干个特征集,然后通过建立特征表而避免顺序扫描.在真实数据集上的实验表明该算法对推荐系统的可伸缩性和推荐质量都有较大的提高.  相似文献   

8.
This study examined the impact of collaborative filtering (the so-called recommender) on college students’ use of an online forum for English learning. The forum was created with an open-source software, Drupal, and its extended recommender module. This study was guided by three main questions: 1) Is there any difference in online behaviors between students who use a traditional forum and students who use a forum with a recommender?; 2) Is there any difference in learning motivation between students who use a traditional forum and students who use a forum with a recommender?; 3) Is there any difference in learning achievement between students who use a traditional forum and students who use a forum with a recommender?.  相似文献   

9.
Considering the increasing demand of multi-agent systems, the practice of software reuse is essential to the development of such systems. Multi-agent domain engineering is a process for the construction of domain-specific agent-based reusable software artifacts, like domain models, representing the requirements of a family of multi-agent systems in a domain, and frameworks, implementing reusable agent-based design solutions to those requirements. This article describes the domain modeling tasks of the MADEM methodology and a case study on the application of GRAMO, a MADEM technique, for the construction of the domain model of ONTOWUM, specifying the common and variable requirements of a family of Web recommender systems based on usage mining and collaborative filtering.  相似文献   

10.
As the use of recommender systems becomes more consolidated on the Net, an increasing need arises to develop some kind of evaluation framework for collaborative filtering measures and methods which is capable of not only testing the prediction and recommendation results, but also of other purposes which until now were considered secondary, such as novelty in the recommendations and the users’ trust in these. This paper provides: (a) measures to evaluate the novelty of the users’ recommendations and trust in their neighborhoods, (b) equations that formalize and unify the collaborative filtering process and its evaluation, (c) a framework based on the above-mentioned elements that enables the evaluation of the quality results of any collaborative filtering applied to the desired recommender systems, using four graphs: quality of the predictions, the recommendations, the novelty and the trust.  相似文献   

11.
Huang  Tianlin  Zhang  Defu  Bi  Lvqing 《Neural computing & applications》2020,32(22):17043-17057
Neural Computing and Applications - The main purpose of collaborative filtering algorithm is to provide a personalized recommender system based on past interactions of each user (e.g., clicks and...  相似文献   

12.
In recent years, Collaborative Filtering (CF) has proven to be one of the most successful techniques used in recommendation systems. Since current CF systems estimate the ratings of not-yet-rated items based on other items’ ratings, these CF systems fail to recommend products when users’ preferences are not expressed in numbers. In many practical situations, however, users’ preferences are represented by ranked lists rather than numbers, such as lists of movies ranked according to users’ preferences. Therefore, this study proposes a novel collaborative filtering methodology for product recommendation when the preference of each user is expressed by multiple ranked lists of items. Accordingly, a four-staged methodology is developed to predict the rankings of not-yet-ranked items for the active user. Finally, a series of experiments is performed, and the results indicate that the proposed methodology produces high-quality recommendations.  相似文献   

13.
Recommender systems, which have emerged in response to the problem of information overload, provide users with recommendations of content suited to their needs. To provide proper recommendations to users, personalized recommender systems require accurate user models of characteristics, preferences and needs. In this study, we propose a collaborative approach to user modeling for enhancing personalized recommendations to users. Our approach first discovers useful and meaningful user patterns, and then enriches the personal model with collaboration from other similar users. In order to evaluate the performance of our approach, we compare experimental results with those of a probabilistic learning model, a user model based on collaborative filtering approaches, and a vector space model. We present experimental results that show how our model performs better than existing alternatives.  相似文献   

14.
Collaborative recommender systems: Combining effectiveness and efficiency   总被引:1,自引:0,他引:1  
Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a successful recommendation technique that confronts the “information overload” problem. Memory-based algorithms recommend according to the preferences of nearest neighbors, and model-based algorithms recommend by first developing a model of user ratings. In this paper, we bring to surface factors that affect CF process in order to identify existing false beliefs. In terms of accuracy, by being able to view the “big picture”, we propose new approaches that substantially improve the performance of CF algorithms. For instance, we obtain more than 40% increase in precision in comparison to widely-used CF algorithms. In terms of efficiency, we propose a model-based approach based on latent semantic indexing (LSI), that reduces execution times at least 50% than the classic CF algorithms.  相似文献   

15.
Automatic recommenders are now omnipresent in e-commerce websites, as selecting and offering to users products they may be interested in can considerably increase sales revenue. The most popular recommendation strategy is currently considered to be the collaborative filtering technique, based on offering to the user who will receive the recommendation items that were appealing to other individuals with similar preferences (the so-called neighbors). On the other hand, its principal obstacle is the sparsity problem, related to the difficulty to find overlappings in ratings when there are many items. As the product catalogue of these sites gets more and more diverse, a new problem has arisen that happens when users share likings for lots of products (for which they are reckoned to be neighbors) but they differ in products similar to the one that is being considered for recommendation. They are fake neighbors. Narrowing the range of products on which similarities between users are sought can help to avoid this, but it usually causes a worsening of the sparsity problem because the chances of finding overlappings gets lower. In this paper, a new strategy is proposed based on semantic reasoning that aims to improve the neighborhood formation in order to overcome the aforementioned fake neighborhood problem. Our approach is aimed at making more flexible the search for semantic similarities between different products, and thus not require users to rate the same products in order to be compared.  相似文献   

16.
In this paper we present a collaborative filtering method which opens up the possibilities of traditional collaborative filtering in two aspects: (1) it enables joint recommendations to groups of users and (2) it enables the recommendations to be restricted to items similar to a set of reference items. By way of example, a group of four friends could request joint recommendations of films similar to “Avatar” or “Titanic”. In the paper, using experiments, we show that the traditional approach of collaborative filtering does not satisfactorily resolve the new possibilities contemplated; we also provide a detailed formulation of the method proposed and an extensive set of experiments and comparative results which show the superiority of designed collaborative filtering compared to traditional collaborative filtering in: (a) number of recommendations obtained, (b) quality of the predictions, (c) quality of the recommendations. The experiments have been carried out on the databases Movielens and Netflix.  相似文献   

17.
With the growing availability and popularity of online reviews, consumers' opinions towards certain products or services are generated and spread over the Internet; sentiment analysis thus arises in response to the requirement of opinion seekers. Most prior studies are concerned with statistics-based methods for sentiment classification. These methods, however, suffer from weak comprehension of text-based messages at semantic level, thus resulting in low accuracy. We propose an ontology-based opinion-aware framework – EOSentiMiner – to conduct sentiment analysis for Chinese online reviews from a semantic perspective. The emotion space model is employed to express emotions of reviews in the EOSentiMiner, where sentiment words are classified into two types: emotional words and evaluation words. Furthermore, the former contains eight emotional classes, and the latter is divided into two opinion evaluation classes. An emotion ontology model is then built based on HowNet to express emotion in a fuzzy way. Based on emotion ontology, we evaluate some factors possibly affecting sentiment classification including features of products (services), emotion polarity and intensity, degree words, negative words, rhetoric and punctuation. Finally, sentiment calculation based on emotion ontology is proposed from sentence level to document level. We conduct experiments by using the data from online reviews of cellphone and wedding photography. The result shows the EOSentiMiner outperforms baseline methods in term of accuracy. We also find that emotion expression forms and connection relationship vary across different domains of review corpora.  相似文献   

18.
Collaborative Filtering (CF), one of the most successful technologies among recommender systems, is a system assisting users to easily find useful information. One notable challenge in practical CF is the cold start problem, which can be divided into cold start items and cold start users. Traditional CF systems are typically unable to make good quality recommendations in the situation where users and items have few opinions. To address these issues, in this paper, we propose a unique method of building models derived from explicit ratings and we apply the models to CF recommender systems. The proposed method first predicts actual ratings and subsequently identifies prediction errors for each user. From this error information, pre-computed models, collectively called the error-reflected model, are built. We then apply the models to new predictions. Experimental results show that our approach obtains significant improvement in dealing with cold start problems, compared to existing work.  相似文献   

19.
Knowledge and Information Systems - We propose a novel collaborative filtering method for top- $$n$$ recommendation task using bicustering neighborhood approach. Our method takes advantage of local...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号