首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of Al (0.4 and 1 wt%) addition on the hot deformation behavior of the Mg–3Sn–2Ca (TX32) alloy has been studied with the help of processing maps generated in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1. The deformed specimens have been examined as regards changes in texture and microstructure using electron back scatter diffraction and transmission electron microscopy, respectively. The map for the TX32 base alloy exhibited two dynamic recrystallization (DRX) domains in the temperature and strain rate ranges: (1) 300–350 °C and 0.0003–0.001 s?1, and (2) 390–500 °C and 0.005–0.6 s?1. While 0.4 wt% Al addition to TX32 did not result in any significant change in the processing map, the map for the alloy with 1 wt% Al (TX32-1Al) exhibited four domains in the ranges: (1) 300–325 °C and 0.0003–0.001 s?1, (2) 325–430 °C and 0.001–0.04 s?1, (3) 430–500 °C and 0.01–0.5 s?1, and (4) 430–500 °C and 0.0003–0.002 s?1. In the first three domains, DRX has occurred, whereas in the fourth domain, grain boundary sliding takes place causing intercrystalline cracking in tension. In Domain 1 for all the alloys, DRX has occurred predominantly by basal slip and recovery by climb as confirmed by the resulting basal texture and tilt type sub-boundary structure. In Domain 2 of the base alloy and Domain 3 of the alloy with 1 wt% Al, second-order pyramidal slip dominates associated with cross-slip which randomizes the texture, and forms tangled dislocations and twist type sub-boundaries in the microstructure. The addition of 1 wt% Al causes solid solution strengthening and results in Domain 2 of the map of TX32-1Al alloy and in this domain basal+prismatic slip dominate.  相似文献   

2.
Abstract

The hot deformation characteristics of IN 600 nickel alloy are studied using hot compression testing in the temperature range 850–1200°C and strain rate range 0·001–100 s?l. A processing map for hot working is developed on the basis of the data obtained, using the principles of dynamic materials modelling. The map exhibits a single domain with a peak efficiency of power dissipation of 48% occurring at 1200°C and 0·2 s?1, at which the material undergoes dynamic recrystallisation (DRX). These are the optimum conditions for hot working of IN 600. At strain rates higher than 1 s?1, the material exhibits flow localisation and its microstructure consists of localised bands of fine recrystallised grains. The presence of iron in the Ni–Cr alloy narrows the DRX domain owing to a higher temperature required for carbide dissolution, which is essential for the occurrence of DRX. The efficiency of DRX in Ni–Cr is, however, enhanced by iron addition.

MST/1856  相似文献   

3.
The hot deformation of cast TXA321 alloy has been studied in the temperature range 300–500 °C and in the strain rate range 0.0003–10 s?1 by developing a processing map. The map exhibited four domains in the temperature and strain rate ranges: (1) 300–325 °C and 0.0003–0.001 s?1, (2) 325–430 °C and 0.001–0.04 s?1, (3) 430–500 °C and 0.01–0.5 s?1, and (4) 430–500 °C and 0.0003–0.002 s?1. The first three domains represent dynamic recrystallization, resulting in finer grain sizes in the first two domains and coarser in the third domain. In the fourth domain, the alloy exhibited grain boundary sliding resulting in intercrystalline cracking in tension and is not useful for its hot working. Two regimes of flow instability were identified at higher strain rates, one at temperatures <380 °C and the other at >480 °C.  相似文献   

4.
A processing map for extruded AZ31-1Ca-1.5NAl composite has been developed, which exhibited four important domains for hot working. The corresponding temperatures and strain rates associated with these domains are: (1) 250–350°C and 0.0003–0.01 s?1; (1A) 350–410°C and 0.0003–0.01 s?1; (2): 410–490°C and 0.002–0.2 s?1; and (3) 325–410°C and 0.6 s?1 to 10 s?1. Dynamic recrystallization (DRX) occurred in all the four domains although different slip mechanisms and recovery processes are involved. Basal slip and prismatic slip dominates deformation in Domains 1 and 1A, respectively, with recovery occurring by climb that is lattice self-diffusion controlled. However, because of the high strain rates in Domain 3, recovery occurs through a climb process, controlled by grain boundary self-diffusion. The recovery mechanism in Domain 2 is cross-slip assisted by pyramidal slip along with basal and prismatic slip. The grain size has a linear relation with Zener–Hollomon parameter in all the domains. At high strain rates, the composite undergoes shear fracture at lower temperatures and intercrystalline fracture at higher temperatures. All of the identified DRX domains are suitable for conducting bulk metal forming processes although the one with the highest strain rates (Domain 3) is preferred for achieving high productivity.  相似文献   

5.
Abstract

The hot working behaviour of magnesium AZ (e.g. AZ31; Al: 3%, Zn: 1%) alloys and their associated crystallographic texture evolution is reviewed. Under hot working conditions, the stress–strain curves show flow softening at all the temperatures and strain rates indicating dynamic recrystallisation (DRX) is predominant. The mean size of the recrystallised grains in all the alloys decreases as the value of Zener–Hollomon parameter Z increases. The hot working range of the alloys dwell between 200 and 500°C and the strain rates between 10?3 and 5 s?1. The hot working of AZ series alloy shows discontinuous DRX as the main mechanism. Equal channel angular processing shows continuous DRX. The constitutive equation development shows a linear relationship between the stress and the Z parameter. The activation energy for the alloys ranges from 112 to 169 kJ mol?1 and Z values range from 10 to 10 s?1. Textural examinations show basal texture as the predominant orientation.  相似文献   

6.
Abstract

The characteristics of the hot deformation of Zr–2·5Nb (wt-%) in the temperature range 650–950°C and in the strain rate range 0·001–100 s?1 have been studied using hot compression testing. Two different preform microstructures: equiaxed (α+β) and β transformed, have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m+1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (α+β) and β transformed preforms. In the case of equiaxed (α+β), the stress–strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850°C and 0·001 s?1. On the other hand, the β transformed preform exhibits stress–strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of α platelets followed by globularisation with a peak efficiency of 54% at 750°C and 0·001 s?1. The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised grains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zr–2·5Nb exhibits flow localisation at temperatures lower than 700°C and strain rates higher than 1 s?1.

MST/3103  相似文献   

7.
Abstract

The hot deformation behaviour and microstructural evolution in Ti–6Al–2Zr–1Mo–1V alloys have been studied using isothermal hot compression tests. The processing map was developed at a true strain of 0·7 in the temperature range 750–950°C and strain rate range 0·001–10 s?1. The corresponding microstructures were characterised by means of a metallurgical microscope. Globularisation of lamellae occurring to a greater extent in the range 780–880°C and 0·001–0·01 s?1 had a peak power dissipation efficiency of 58% at about 850°C and 0·001 s?1. The specimens deformed in 750–880°C and 0·01–10 s?1 showed an instability region of processing map, whereas the specimens deformed in 880–950°C and 1–10 s?1 indicated three kinds of flow instabilities, i.e. macro shear cracks, prior beta boundary cracks and flow localisation bands.  相似文献   

8.
The hot compression deformation behavior of Cu–6.0Ni–1.0Si–0.5Al–0.15?Mg–0.1Cr alloy with high strength, high stress relaxation resistance and good electrical conductivity was investigated using a Gleeble1500 thermal–mechanical simulator at temperatures ranging from 700 to 900?°C and strain rates ranging from 0.001?to 1?s?1. Working hardening, dynamic recovery and dynamic recrystallization play important roles to affect the plastic deformation behavior of the alloy. According to the stress–strain data, constitutive equation has been carried out and the hot compression deformation activation energy is 854.73?kJ/mol. Hot processing map was established on the basis of dynamic material model theories, and Prasad instability criterion indicates that the appropriate hot processing temperature range and strain rate range for hot deformation were 850~875?°C and 0.001~0.01?s?1, which agreed well with the hot rolling experimentation results.  相似文献   

9.
Hot deformation behavior of as-cast TX32 (Mg–3Sn–2Ca) alloy has been studied in uniaxial compression in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1 with a view to characterize the evolution of microstructure and texture. On the basis of the temperature and strain rate dependence of flow stress, a processing map has been developed and the crystallographic orientation information on the deformed specimens has been obtained from electron back scatter diffraction micro-texture analysis. The processing map revealed two domains of dynamic recrystallization in the temperature and strain rate ranges of (1) 300–350 °C and 0.0003–0.001 s?1 and (2) 390–500 °C and 0.005–0.6 s?1. Specimens deformed at peak in Domain 1 exhibited maximum intensity of basal poles located at about 35–45° to the compression axis while those deformed at peak in Domain 2 showed near-random texture. Schmid factor analysis of different slip systems operating in the two domains suggests that basal + prismatic slip causes the basal texture in Domain 1 while second-order pyramidal slip randomizes the texture in Domain 2.  相似文献   

10.
High strain isothermal compression tests at temperatures of 700–1200°C and strain rates of 0.1–50?s?1 were performed in a Gleeble-3800 thermal simulator to investigate the hot deformation behaviour of a high-alloy Cr–Co–Mo–Ni gear steel, and the constitution equation and hot processing map were established based on these experiments. The results show that the flow stress can be described by the constitutive equation in hyperbolic sine function, and the optimum hot working regions are at the temperature of 1000–1100°C and strain rate of 0.3–1.0?s?1. Optical microscopy observations of austenite grains indicate that dynamic recrystallisation occurs when the deformation temperature is over 900°C. The forging was successfully produced on the basis of the above-described researches.  相似文献   

11.
The hot working behavior of a as-homogenized Mg–Zn–Y–Zr alloy has been investigated in the temperature range 200–400°C and strain rate range 0.0015–7.5 s−1 using processing map. The power dissipation map reveals that a domain of dynamic recrystallisation (DRX) in the temperature range 300–400°C and strain rate range 0.0015–0.15 s−1, with its peak efficiency of 38% at 350°C and 0.0015 s−1, which are the optimum hot working parameters. The apparent activation energy in the hot deformation process is 148 ± 3 KJ/mol that is larger than that of ZK60 alloy because of the obstruction of Y atoms for diffusion. DRX model indicates that DRX of Mg–Zn–Y–Zr alloy is controlled by the rate of nucleation, which is lower one order of magnitude than growth. And the rate of nucleation depends on the process of mechanical recovery by cross-slip of screw dislocations.  相似文献   

12.
We investigated the deformation behavior of a new biomedical Cu-bearing titanium alloy (Ti-645 (Ti-6.06Al-3.75V-4.85Cu, in wt%)) to optimize its microstructure control and the hot-working process. The results showed that true stress–true strain curve of Ti-645 alloy was susceptible to both deformation temperature and strain rate. The microstructure of Ti-645 alloy was significantly changed from equiaxed grain to acicular one with the deformation temperature while a notable decrease in grain size was recorded as well. Dynamic recovery (DRV) and dynamic recrystallization (DRX) obviously existed during the thermal compression of Ti-645 alloy. The apparent activation energies in (α?+?β) phase and β single phase regions were calculated to be 495.21?kJ?mol?1 and 195.69?kJ?mol?1, respectively. The processing map showed that the alloy had a large hot-working region whereas the optimum window occurred in the strain rate range of 0.001–0.1?s?1, and temperature range of 900–960?°C and 1000–1050?°C. The obtained results could provide a technological basis for the design of hot working procedure of Ti-645 alloy to optimize the material design and widen the potential application of Ti-645 alloy in clinic.  相似文献   

13.
Abstract

The deformation behaviour of a 20Cr–25Ni superaustenitic stainless steel (SASS) with initial microstructure of columnar dendrites was investigated using the hot compression method at temperatures of 1000–1200°C and strain rates of 0·01–10 s?1. It was found that the flow stress was strongly dependent on the applied temperature and strain rate. The constitutive equation relating to the flow stress, temperature and stain rate was proposed for hot deformation of this material, and the apparent activation energy of deformation was calculated to be 516·7 kJ mol?1. Based on the dynamic materials model and the Murty’s instability criterion, the variations of dissipation efficiency and instability factor with processing parameters were studied. The processing map, combined with the instability map and the dissipation map, was constructed to demonstrate the relationship between hot workability and microstructural evolution. The stability region for hot processing was inferred accurately from the map. The optimum hot working domains were identified in the respective ranges of the temperature and the strain rate of 1025–1120°C and 0·01–0·03 s?1 or 1140–1200°C and 0·08–1 s?1, where the material produced many more equiaxed recrystallised grains. Moreover, instability regimes that should be avoided in the actual working were also identified by the processing map. The corresponding instability was associated with localised flow, adiabatic shear band, microcracking and free surface cracks.  相似文献   

14.
Abstract

The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750–1200°C and strain rate range 0·0003–100 s?1 using processing maps developed on the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m+1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925°C and 1 s?1. The published results are in agreement with the predictions of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variations of hot ductility. The stress–strain curves exhibited a single peak in the dynamic recrystallisation domain, whereas multiple peaks and ‘drooping’ stress–strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.

MST/1524  相似文献   

15.
Abstract

The behaviour of 17-4 precipitation hardening (PH) stainless steel was studied using the hot compression test at temperatures of 950–1150°C with strain rates of 0·001–10 s?1. The stress–strain curves were plotted by considering the effect of friction. The work hardening rate versus stress curves were used to reveal whether or not dynamic recrystallisation (DRX) occurred. Using the constitutive equations, the activation energy of hot working for 17-4 PH stainless steel was determined as 337 kJ mol?1. The effect of Zener–Hollomon parameter Z on the peak stress and strain was studied using the power law relation. The normalised critical stress and strain for initiation of DRX were found to be 0·89 and 0·47 respectively. Moreover, these behaviours were compared to other steels.  相似文献   

16.
《材料科学技术学报》2019,35(6):1198-1209
The hot deformation behavior of a fine-grained Mg‒8Sn‒2Zn‒2Al (TZA822, in wt%) alloy was investigated in the temperature range of 150–350 °C and the strain rate of 0.01‒10 s−1 employing thermomechanical simulator. In most of the cases, the material showed typical dynamic recrystallization (DRX) features i.e., a signal peak value followed by a gradual decrease or to reach a steady state. The work hardening rate was found to increase with decreasing temperature and increasing strain rate, while strain rates had great effects on work hardening behavior. Meanwhile, the constitutive analysis indicated that cross-slip of dislocations was likely to be the dominant deformation mechanism. In addition, the processing map at the strain of 0.1‒0.7 showed two stability domains with high power dissipation efficiencies and the optimum hot working parameters for the studied alloy was determined to be 350 °C/0.01 s-1 and 350 °C/10 s-1, at which continuous DRX (CDRX) and discontinuous DRX (DDRX) as main softening mechanism. The instability regions occurred at 200‒250 °C/10 s-1 and the main flow instability mechanism was twinning and/or flow localization bands, which were prone to induce cracks and caused in-consistent mechanical properties of the alloy.  相似文献   

17.
《Materials Letters》2006,60(21-22):2786-2790
Processing maps for the hot deformation of electrolytic tough pitch (ETP) copper (100 ppm oxygen) have been developed in the temperature range 600–950 °C and strain rate range 0.001–100 s 1, and compared with those published earlier on ETP copper with higher oxygen contents (180, 220 and 260 ppm). These reveal that dynamic recrystallization (DRX) occurs over a wide temperature and strain rate range and is controlled by different diffusion mechanisms. In ETP copper with 100 and 180 ppm oxygen, the apparent activation energy in the DRX domain occurring in the strain rate range 0.001–10 s 1 and temperature range 600–900 °C is about 198 kJ/mol which suggests lattice self-diffusion to be the rate-controlling mechanism. This DRX domain has moved to higher temperatures and lower strain rates in ETP copper with higher oxygen content. In the second domain occurring at strain rates in the range 10–100 s 1 and temperatures > 700 °C, the apparent activation energy is 91 kJ/mol and DRX is controlled by grain boundary self-diffusion. This domain is absent in the maps of ETP copper with oxygen content higher than 180 ppm and this is attributed to the pinning of the grain boundaries by the oxide particles preventing their migration.  相似文献   

18.
In order to optimize the deformation processing, the hot deformation behavior of Co–Cr–Mo–Cu(hereafter named as Co–Cu) alloy was studied in this paper at a deformation temperature range of 950–1150°C and a strain rate range of 0.008–5 s~(-1). Based on the true stress–true strain curves, a constitutive equation in hyperbolic sin function was established and a hot processing map was drawn. It was found that the flow stress of the Co–Cu alloy increased with the increase of the strain rate and decreased with the increase of the deforming temperature. The hot processing map indicated that there were two unstable regions and one well-processing region. The microstructure, the hardness distribution and the electrochemical properties of the hot deformed sample were investigated in order to reveal the influence of the hot deformation. Microstructure observation indicated that the grain size increased with the increase of the deformation temperature but decreased with the increase of the strain rate. High temperature and low strain rate promoted the crystallization process but increased the grain size, which results in a reduction in the hardness. The hot deformation at high temperature(1100–1150°C) would reduce the corrosion resistance slightly. The final optimized deformation process was: a deformation temperature from 1050 to 1100°C, and a strain rate from 0.008 to 0.2 s~(-1), where a completely recrystallized and homogeneously distributed microstructure would be obtained.  相似文献   

19.
Hot deformation behavior of iron‐nickel based superalloy (multimet N‐155) was investigated by hot compression tests, carried out in the deformation temperature of 850 °C–1150 °C with strain rates of 0.001–0.1 s?1. The results showed that during the hot deformation of the alloy, under the same temperature, the flow stress rises with the increase of strain rate. At the same strain rate, the flow stress decreases with the increase of the temperature. The constitutive equations of the alloy that describe the flow stress as a function of strain rate and deformation temperature were established and the calculated apparent activation energy was 584.996 Kj/mol. The results of metallographic analysis showed that the amount of dynamic recrystallization in the peak efficiency domain is higher than the other domains. The results also showed that by increase of deformation temperature and/or decrease of strain rate, the volume fraction of dynamic recrystallization increases. Processing maps under different strains were constructed for evaluation of flow instability regime and optimization of processing parameters. The optimum hot working window for alloy was obtained at the temperature range of 925 °C–1050 °C and strain rate of 0.001–0.003 s?1, with peak efficiency of 28 %.  相似文献   

20.
Hot deformation characteristics of a 15 vol% SiCp/2009 Al composite fabricated by powder metallurgy were studied by compressive tests conducted at strain rates of 0.001 to 10 s−1 and temperatures of 350 to 500°C. A processing map on basis of a Dynamic Material Model was generated. Different deformation mechanisms such as dynamic recrystallisation (DRX) and superplasticity interpreted by processing map were validated by microstructure observation. Adiabatic shear band formation was observed at higher strain rates, thereby defining the flow instability domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号