首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the creep behavior of adhesively bonded concrete/fiber-reinforced polymer (FRP) joints, through experimental and modeling approaches. The first part proposes a methodology for predicting the long-term creep response of the bulk epoxy adhesive; such a procedure consists of (1) performing short-term tensile creep experiments at various temperatures and stress levels, (2) building the creep compliance master curves according to the time–temperature superposition principle in order to assess the long-term evolution for each stress level, and (3) developing a rheological model whose parameters are identified by fitting the previous master curves. In our case, it was found that master curves (and, consequently, parameters of the rheological model) are dependent on the applied stress level, highlighting the nonlinear creep behavior of the bulk epoxy adhesive. Therefore, evolution laws of the model parameters were established to account for this stress dependence. The second part focuses on the creep response of the concrete/FRP assembly in the framework of a double lap joint shear test configuration. Experiments showed that creep of the adhesive layer leads to a progressive evolution of the strain profile along the lap joint, after only one month of sustained load at 30% of the ultimate strength. Besides, a finite element approach involving the abovementioned rheological model was used to predict the nonlinear creep behavior of the bonded assembly. It confirmed that creep modifies the stress distribution along the lap joint, especially the stress value at the loaded end, and leads to a slight increase in the effective load transfer length. This result is of paramount interest since the transfer length is a key parameter in the design of FRP-bonded strengthening systems. Moreover, instantaneous and long-term calculated strain profiles were found in fair agreement with experimental data, validating the modeling approach.  相似文献   

2.
In rubber-modified epoxy resins, a damage zone is generated in the vicinity of the crack tip due to the cavitation of rubber particles, which improves fracture toughness dramatically. Hence, in evaluating the stress distribution in adhesive joints with rubber-modified adhesives, the void formation and growth should be taken into account. In most studies, however, the adhesive layer is still considered as a continuum material governed by the von Mises yield criterion. For many ductile materials, Gurson's model is used for the stress analysis, in which the void formation and growth is taken into account. In a previous study, using adhesively bonded scarf and torsional butt joints, the effect of stress triaxiality on the yield stress in the adhesive layer was investigated. In this study, these experimentally-obtained yield stresses were compared with those obtained by a finite element method, where Gurson's constitutive equations were applied to the adhesive layer. As a result, the calculated yield stresses agreed well with the experimentally-obtained yield stresses. This indicates that Gurson's model is a useful tool for estimating stress distributions in adhesive joints with rubbermodified adhesives.  相似文献   

3.
Viscous flow that often occurs in adhesive materials leads to a permanent deformation when adhesives are subjected to creep loading. Creep loading has a significant influence on the strength of bonded structures. Due to the viscous behavior, the fracture energy also may change with time for joints that experience creep loading in service. In this work the effects of two creep parameters (creep load and time) on the residual mode II fracture energy of an adhesive was investigated using end notched flexure (ENF) specimens. To achieve this, ENF samples were subjected to different creep loading levels at different creep times followed by quasi static tests to obtain the residual shear fracture energy of the adhesive. Experimental results showed that pre-creep loading of the bonded structures can significantly improve the fracture energy and the static strength of the joints.  相似文献   

4.
Abstract

This paper describes a step-by-step procedure for creating a knowledge base of the functional properties of multi-ply rubber conveyor belts. The knowledge was gathered during laboratory studies of the operational features of belts and their joints which had been manufactured using various bonding methods. The measurements were done on the conveyor belts at different stages of their use and also under industrial conditions. The results of the laboratory studies were used to verify a numerical model developed for a typical conveyor belt adhesive joint manufactured from several rubber materials with different properties. The development of the finite element numerical model was preceded by strength tests aimed at identifying the strength properties of the rubber materials used as the constituent elements of the joint. The causes of previous errors made in the course of preparing material models for numerical simulation were described and a proper method for carrying out strength tests was proposed. The collected data and the numerical model of the joint were used to perform a simulation of the state of stress and strain in the area of the joint. This made possible a detailed analysis of the processes occurring within the joint in terms of fatigue performance. The numerical model can be used in the analysis and optimization of various joint structures made from rubber materials with different strength properties. An analysis was also carried out of the influence of the thickness of the adhesive layer on the strength of a joint to illustrate the possibility of using the developed model for the optimization of joint geometry. The goal of the numerical analysis was to estimate the possibility of using the developed model of the joint for predicting the durability and strength of the joint, as well as using it at the structural design stage of the joint.  相似文献   

5.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

6.
The stresses in band adhesive butt joints, in which two adherends are bonded partially at the interfaces, are analyzed, using a two-dimensional theory of elasticity, in order to demonstrate the usefulness of the joints. In the analysis, similar adherends and adhesive bonds, which are bonded at two or three regions, are, respectively, replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli for adherends to that for adhesives, the adhesive thickness, the bonding area and position, and the load distribution are shown on the stress distributions at interfaces. It is seen that band adhesive joints are useful when the bonding area and positions are changed with external load distributions. Photoelastic experiments and the measurement of the adherend strains were carried out. The analytical results are in a fairly good agreement with the experimental results. In addition, a method for estimating the joint strength is proposed by using the interface stress distribution obtained by the analysis. Experiments concerning joint strength were performed and fairly good agreement is found between the estimated values and the experimental results.  相似文献   

7.
The aim of this research was to develop an experimental–numerical approach to characterize the effect of constant loading coupled with elevated temperature on epoxy bulk adhesive and to predict the stress degradation of bulk adhesive specimen under 15% and 25% tensile failure loads for the automotive industry. A power-law creep model was built to simulate the effect of temperature and loading on adhesive mechanical behavior, and the related strength degradation simulation has also been implemented using a creep strain-dependent ductile damage model. Experiments were conducted on bulk adhesive specimens under constant temperature coupled with mechanical load, and the corresponding experimental results provided creep parameters for the simulation procedure as well as effective validation with the numerical results in this study. The results obtained from experiments and numerical simulations were also in good agreement.  相似文献   

8.
In this paper, the effect of adding graphene oxide nano-platelets (GONPs) into the adhesive layer was investigated on the creep behavior of adhesively bonded joints. The neat and GONP-reinforced adhesive joints were manufactured and tested under creep loading with different stress and temperature levels. 0.1?wt% GONPs revealed the highest improvement on the adhesive joint creep behavior amongst the studied weight percentages. Furthermore, the effect of GONPs on the creep behavior of adhesive joints was more significant at higher temperatures. It was found that adding 0.1?wt% of GONPs into the adhesive layer imposed reductions of 21%, 31% and 34% in the elastic shear strains and reductions of 24%, 31% and 37% in the creep shear strains of SLJs under testing temperatures of 30, 40 and 50?°C, respectively. The Burgers rheological model was employed for simulating the creep behavior of the neat and GONP-reinforced adhesive joints. The Burgers model parameters were obtained as functions of testing temperature, creep shear stress and GONP weight percentage using a response surface methodology. Reasonable agreement was obtained between the modeled and experimental creep behaviors of the adhesive joints.  相似文献   

9.
An experimental study was conducted on the strength of adhesively bonded steel joints, prepared epoxy and acrylic adhesives. At first, to obtain strength characteristics of these adhesives under uniform stress distributions in the adhesive layer, tensile tests for butt, scarf and torsional test for butt joints with thin-wall tube were conducted. Based on the above strength data, the fracture envelope in the normal stress-shear stress plane for the acrylic adhesive was compared with that for the epoxy adhesive. Furthermore, for the epoxy and acrylic adhesives, the effect of stress triaxiality parameter on the failure stress was also investigated. From those comparison, it was found that the effect of stress tri-axiality in the adhesive layer on the joint strength with the epoxy adhesive differed from that with the acrylic adhesive. Fracture toughness tests were then conducted under mode l loading using double cantilever beam (DCB) specimens with the epoxy and acrylic adhesives. The results of the fracture toughness tests revealed continuous crack propagation for the acrylic adhesive, whereas stick-slip type propagation for the epoxy one. Finally, lap shear tests were conducted using lap joints bonded by the epoxy and acrylic adhesives with several lap lengths. The results of the lap shear tests indicated that the shear strength with the epoxy adhesive rapidly decreases with increasing lap length, whereas the shear strength with the acrylic adhesive decreases gently with increasing the lap length.  相似文献   

10.
The aim of this research was to develop an experimental–numerical approach to characterize the effect of salt spray environment on adhesively bonded joints and predict the degradation in joint strength. Experiments were conducted on bulk adhesive specimens and single lap joints (SLJs) under salt spray condition and the corresponding experimental results were reported. The environment degradation factor, Deg, was incorporated into a bilinear cohesive zone model (CZM) to simulate the degradation process of the joints. The degraded CZM parameters, determined from static tests on bulk adhesive, were imported into the CZM using an approximate moisture concentration gradient approach. The reduction in residual strength of SLJ under salt spray environment was successfully predicted through comparing the experimental and numerical results.  相似文献   

11.
When natural fiber‐thermoplastic composites are used in long‐term loading applications, investigating creep behavior is essential. The creep behavior of high‐density polyethylene (HDPE)‐based composites reinforced with four sizes of wood fibers (WFs) (120–80, 80–40, 40–20, and 20–10 mesh) was investigated. The instantaneous deformation and creep strain of all WF/HDPE composites increased at a fixed loading level when the temperature was increased incrementally from 25 to 85°C. At a constant loading level, composites containing the larger‐sized WFs had better creep resistance than those containing smaller‐sized fibers at all measured temperatures. The creep properties of composites with smaller‐sized WFs were more temperature‐dependent than those with larger‐sized WFs. Two creep models (Burger's model and Findley's power law model) were used to fit the measured creep data. A time–temperature superposition principle calculation was attempted for long‐term creep prediction. The Findley model fitted the composite creep curves better than the four‐element Burger's model. From the predicted creep response of the WF/HDPE composites, two groups of small fibers (120–80 and 80–40 mesh) had the lowest creep resistance over long periods of time at the reference temperature of 25°C. The largest WFs (10–20 mesh) provided the best composite creep resistance. POLYM. ENG. SCI., 55:693–700, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
The durability of adhesive joints is of special concern in structural applications and moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying environmental conditions throughout their life. This paper presents a methodology to predict the stresses in adhesive joints under cyclic moisture conditioning. The single lap joints were manufactured from aluminium alloy 2024 T3 and the FM73®-BR127® adhesive-primer system. Experimental determination of the mechanical properties of the adhesive was carried out to measure the effect of moisture uptake on the strength of the adhesive. The experimental results revealed that the tensile strength of the adhesive decreased with increasing moisture content. The failure strength of the single lap joints also progressively degraded with time when conditioned at 50°C, immersed in water; however, most of the joint strength recovered after drying the joints. A novel finite element based methodology, which incorporated moisture history effects, was adopted to determine the stresses in the single lap joints after curing, conditioning, and tensile testing. A significant amount of thermal residual stress was present in the adhesive layer after curing the joints; however, hygroscopic expansion after the absorption of moisture provided some relief from the curing stresses. The finite element model used moisture history dependent mechanical properties to predict the stresses after application of tensile load on the joints. The maximum stresses were observed in the fillet areas in both the conditioned and the dried joints. Study of the stresses revealed that degradation in the strength of the adhesive was the major contributor in the strength loss of the adhesive joints and adhesive strength recovery also resulted in recovered joint strength. The presented methodology is generic in nature and may be used for various joint configurations as well as for other polymers and polymer matrix composites.  相似文献   

13.
本研究设计了“十字交叉法”陶瓷胶粘剂剪切蠕变试验装置,选取刚性环氧树脂及柔性硅酮结构胶进行剪切蠕变试验,研究了环境温度、剪切应力、粘结面积等因素对胶粘剂剪切蠕变的影响,通过模型拟合对胶粘剂的剪切蠕变行为进行了分析和预测,探究了两种胶粘剂的蠕变破坏模式。结果表明:采用十字交叉法能够准确便捷地测试陶瓷胶粘剂的蠕变性能。增大胶粘层柔性、提高环境温度、增大剪切应力都会加速蠕变的发展,但粘结面积对蠕变速率无明显影响。刚性环氧树脂胶粘剂试样的蠕变失效形式为粘结层内聚破坏及界面脱粘,符合时间硬化模型;柔性硅酮结构胶试样失效形式为粘结层内聚破坏,符合Burgers模型。  相似文献   

14.
Rubber-modified epoxy adhesives are used widely as structural adhesive owing to their properties of high fracture toughness. In many cases, these adhesively bonded joints are exposed to cyclic loading. Generally, the rubber modification decreases the static and fatigue strength of bulk adhesive without flaw. Hence, it is necessary to investigate the effect of rubber-modification on the fatigue strength of adhesively bonded joints, where industrial adhesively bonded joints usually have combined stress condition of normal and shear stresses in the adhesive layer. Therefore, it is necessary to investigate the effect of rubber-modification on the fatigue strength under combined cyclic stress conditions. Adhesively bonded butt and scarf joints provide considerably uniform normal and shear stresses in the adhesive layer except in the vicinity of the free end, where normal to shear stress ratio of these joints can cover the stress combination ratio in the adhesive layers of most adhesively bonded joints in industrial applications.

In this study, to investigate the effect of rubber modification on fatigue strength with various combined stress conditions in the adhesive layers, fatigue tests were conducted for adhesively bonded butt and scarf joints bonded with rubber modified and unmodified epoxy adhesives, wherein damage evolution in the adhesive layer was evaluated by monitoring strain the adhesive layer and the stress triaxiality parameter was used for evaluating combined stress conditions in the adhesive layer. The main experimental results are as follows: S–N characteristics of these joints showed that the maximum principal stress at the endurance limit indicated nearly constant values independent of combined stress conditions, furthermore the maximum principal stress at the endurance limit for the unmodified adhesive were nearly equal to that for the rubber modified adhesive. From the damage evolution behavior, it was observed that the initiation of the damage evolution shifted to early stage of the fatigue life with decreasing stress triaxiality in the adhesive layer, and the rubber modification accelerated the damage evolution under low stress triaxiality conditions in the adhesive layer.  相似文献   

15.
In this study, the tensile shear and bending tests of adhesively bonded single lap joints with the acrylic adhesive was evaluated experimentally and numerically. In the previous paper, the traction-separation laws in mode 1 and mode 2 for an acrylic adhesive were directly obtained from the observation of failure process using Arcan type adhesively bonded specimens: simultaneous measurements of the J-integral and the opening displacements in the directions normal, δn and tangential to the adhesive layer, δs respectively. The experimental results were compared with numerical simulations conducted in ABAQUS including cohesive damage model. The cohesive laws obtained in the previous paper were simplified to trapezoidal shape from the experimentally obtained ones which were indicated in the previous paper. A good agreement was found between the experimental and numerical results. Then, to investigate the damage evolution in the adhesive layer for some lap joints, microscopic video observation was conducted near the end of the adhesive layer, and the video image have been compared with the contours of damage variable obtained by FEM corresponding to the video images. The observed damage evolution also agrees with the trend of damage variable.  相似文献   

16.
This study addresses the low-speed impact behavior of adhesively bonded single-lap joints. An explicit dynamic finite element analysis was conducted in order to determine the damage initiation and propagation in the adhesive layers of adhesive single-lap joints under a bending impact load. A cohesive zone model was implemented to predict probable failure initiation and propagation along adhesive–adherend interfaces whereas an elasto-plastic material model was used for the adhesive zone between upper and lower adhesive interfaces as well as the adherends. The effect of the plastic deformation ability of adherend material on the damage mechanism of the adhesive layer was also studied for two aluminum materials Al 2024-T3 and Al 5754-0 having different strength and plastic deformation ability. The effects of impact energy (3 and 11 J) and the overlap length (25 and 40 mm) were also investigated. The predicted contact force-time, contact force-central displacement variations, the damage initiation and propagation mechanism were verified with experimental ones. The SEM and macroscope photographs of the adhesive fracture surfaces were similar to those of the explicit dynamic finite element analysis.  相似文献   

17.
Single-lap band adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a four-body contact problem using a two-dimensional theory of elasticity (plane strain state). In the analysis, the upper and lower adherends and the adhesive which are bonded in two regions are replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli of the adherends, the ratio of the adherend thicknesses, and the ratio of the band length to the half lap length on the stress distributions at the interfaces are examined. A method for estimating the joint strength is proposed using the interface stress and strain obtained by the analysis. An elasto-plastic finite element analysis (EP-FEA) was conducted for predicting the joint strength more exactly. Experiments to measure strains and the joint strength were also carried out. The results show that the strength of a single-lap band adhesive joint is almost the same as that of a single-lap adhesive joint in which the two adherends are completely bonded at the interfaces. Thus, the single-lap band adhesive joints are useful in the design of single-lap joints.  相似文献   

18.
The strength and interfacial behavior of single lap joints with graded adherends subjected to uniaxial tensile loading are investigated in the present paper. A bilinear cohesive zone model coupled with the finite element method is adopted to describe the damage and failure process of the adhesive layer. The peak loading, the rotation angle between the overlap of the joint and the horizontal direction, as well as the failure energy are investigated comprehensively. It is interesting to find that adopting different variation law in the graded adherends may result in varying strength of adhesive joints. By means of choosing proper material and geometry parameters of adhesive joints, the peak loading, the rotation angle and the failure energy of joints can be greatly improved. What is more, the strength of the SLJ is found to depend much more on the property of the soft part near the adhesive layer. The results should be helpful to guide the design of novel structures of adhesive joints in present and potential applications.  相似文献   

19.
Measurements of the shear, tensile, peel, and creep strength of ethylene vinyl acetate (EVA)/CaCO3/terpene phenol adhesive system at three different ratios [100/60/0 (EVA-O), 80/48/20 (EVA-20), and 60/36/40 (EVA-40) by weight, using wood and aluminum as adherends] were conducted. Over a wide range of temperatures and rates of deformation, adhesion shear, tensile, and peel strength results, as well as the creep response over a broad range of temperature and stresses, were found to yield a single master curve by means of the reduced-variable technique. It was observed that the peak of E′ representing Tg, shifted toward higher temperatures as the amount of terpene phenol in the blend was increased. The most obvious effect of increasing the tackifier resin was the shifting of the adhesion strength master curves to the direction of lower rates. The shift was associated with the rise in Tg as the blend ratio was increased. The influence of the tackifier resin in modifying the viscoelastic properties of the adhesive was further described in a comparison of the adhesion strength master curves with corresponding dynamic viscoelastic curves of the adhesive films. The master curves for the creep response of the adhesives showed that the stress-breaking time relationship shifts toward longer time for EVA-40 with high Tg. Thus, it was found that the strength of adhesion is due mainly to dynamic effects in the adhesive of a viscous nature in the same way to the cohesive strength of the viscoelastic materials. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 409–418, 1998  相似文献   

20.
One of the challenges in the application of structural adhesive joints is the prediction of their long-term durability. During the service life, moisture diffuses into the adhesive layer and eventually degrades its fracture properties. Environmental degradation should thus be taken into consideration in the design and analysis of adhesive joints. This work first provides an overview, summarizing the recent efforts regarding the hygrothermal exposure of adhesive joints, accelerated aging methods, water diffusion modeling, and characterization of fracture properties in adhesively bonded joints. The second part presents a recent degradation methodology by which the fracture toughness evolution of adhesive joints can be predicted using fracture test data obtained using the accelerated open-faced degradation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号