首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present investigation was to enhance the oral bioavailability of olmesartan medoxomil by improving its solubility and dissolution rate by preparing nanosuspension (OM-NS), using the Box–Behnken design. In this, four factors were evaluated at three levels. Independent variables include: concentration of drug (X1), concentration of surfactant (X2), concentration of polymer (X3) and number of homogenization cycles (X4). Based on preliminary studies, the size (Y1), zeta potential (ZP) (Y2) and % drug release at 5?min (Y3) were chosen as dependent responses. OM-NS was prepared by high pressure homogenization method. The size, PDI, ZP, assay, in vitro release and morphology of OM-NS were characterized. Further, the pharmacokinetic (PK) behavior of OM-NS was evaluated in male wistar rats. Statistically optimized OM-NS formulation exhibited mean particle size of 492?nm, ZP of –27.9?mV and 99.29% release in 5?min. OM-NS showed more than four times increase in its solubility than pure OM. DSC and XRD analyses indicated that the drug incorporated into OM-NS was in amorphous form. The morphology of OM-NS was found to be nearly spherical with high dispersity by scanning electron microscopic studies. The PK results showed that OM lyophilized nanosuspension (NS) exhibited improved PK properties compared to coarse powder suspension and marketed tablet powder suspension (TS). Oral bioavailability of lyophilized NS was increased by 2.45 and 2.25 folds when compared to marketed TS and coarse powder suspension, respectively. Results of this study lead to conclusion that NS approach was effective in preparing OM formulations with enhanced dissolution and improved oral bioavailability.  相似文献   

2.
Self-emulsifying drug delivery systems (SES) were developed to improve oral bioavailability of asenapine maleate (ASM), an antipsychotic drug with challenging amphiphobic nature and extensive pre-systemic metabolism. ASM-SES was prepared by choosing the proportion of oil, surfactant, co-surfactant from constructed phase diagram. The in vitro and ex vivo evaluation was done. In vivo evaluation was done through pharmacokinetic and pharmacodynamic studies. Role of lymphatic absorption was studied by lymphatic absorption inhibition study. A formulation consisting of 9.9%, 59.4%, 29.7% and 1% of oil, surfactant, co-surfactant, and drug respectively was considered as optimized formulation. After various evaluation test, the globule size and zeta potential for optimized formulation (SES4) were found to be 137.9?nm and ?28.8?mV respectively. A maximum of 99.64?±?0.16% of ASM was released from SES4 in 60?minutes of time. The flux (ex vivo study) increased by 2.33 folds, which prove the enhanced release and permeation of ASM when loaded into SES. The animals administered with SES4 showed higher activity and good pharmacodynamic response than the control and ASM-Suspension, which may be due to the greater availability of the drug. The maximum pharmacodynamic response was observed at the tmax determined by Pharmacokinetic studies. The bioavailability increased by 1.64 folds with 16.55?±?3.11% as extend of lymphatic absorption (r?=?0.9732). Good in vitro in vivo correlation was observed. ASM-SES is a novel approach to effectively deliver ASM and improve the oral bioavailability.  相似文献   

3.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

4.
Context: Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs.

Objectives: This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability.

Methods: Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug–excipient interaction using zetasizer, atomic force microscope (AFM), LC–MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits.

Results: The vesicles were spherical with 247?±?4.67?nm diameter hosting 73.29?±?3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80?±?0.51% hemolysis at 1000?µg/mL. It was also found safe in mice up to 2.5?g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits.

Conclusions: The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.  相似文献   

5.
The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56?±?8.57?nm, 0.27?±?0.028 and 83.66?±?5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p?0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.  相似文献   

6.
Purpose: Zaleplon (ZL) is a hypnotic drug prescribed for the management of insomnia and convulsions. The oral bioavailability of ZL was low (~30%) owing to poor water solubility and hepatic first-pass metabolism. The cornerstone of this investigation is to develop and optimize solid lipid nanoparticles (SLNs) of ZL with the aid of Box–Behnken design (BBD) to improve the oral bioavailability.

Methods: A design space with three formulation variables at three levels were evaluated in BBD. Amount of lipid (A1), amount of surfactant (A2) and concentration of co-surfactant (%) (A3) were selected as independent variables, whereas, particle size (B1), entrapment efficiency (B2) and zeta potential (ZP, B3) as responses. ZL-SLNs were prepared by hot homogenization with ultrasonication method and evaluated for responses to obtain optimized formulation. Morphology of nanoparticles was observed under SEM. DSC and XRD studies were examined to understand the native crystalline behavior of drug in SLN formulations. Further, in vivo studies were performed in Wistar rats.

Results: The optimized formulation with 132.89?mg of lipid, 106.7?mg of surfactant and 0.2% w/v of co-surfactant ensued in the nanoparticles with 219.9?±?3.7?nm of size, ?25.66?±?2.83?mV surface charge and 86.83?±?2.65% of entrapment efficiency. SEM studies confirmed the spherical shape of SLN formulations. The DSC and XRD studies revealed the transformation of crystalline drug to amorphous form in SLN formulation. In conclusion, in vivo studies in male Wistar rats demonstrated an improvement in the oral bioavailability of ZL from SLN over control ZL suspension.

Conclusions: The enhancement in the oral bioavailability of ZL from SLNs, developed with the aid of BBD, explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery of this poorly soluble drug.  相似文献   

7.
The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box–Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384?±?21?nm and PDI of 0.172?±?0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42?±?0.73 versus 3.80?±?0.66?mg/L) and AUC0???t (193.61?±?16.30 versus 91.92?±?17.95?mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp.  相似文献   

8.
Abstract

Raft is an emerging drug delivery system, which is suitable for controlled release drug delivery and targeting. The present study aimed to evaluate the physico-chemical properties of raft, in vitro release of pantoprazole sodium sesquihydrate and conduct bioavailability studies. Box behnken design was used with three independent and dependent variables. Independent variables were sodium alginate (X1), pectin (X2) and hydroxypropyl methyl cellulose K100M (X3) while dependent variables were percentage drug release at 2 (Y2), 4 (Y4) and 8?h (Y8). The developed rafts were evaluated by their physical and chemical properties. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to study the chemical interaction and thermal behaviour of drug with polymers. Alginate and pectin contents of R9 formulation were 99.28% and 97.29%, respectively, and acid neutralization capacity was 8.0. R9 formulation showed longer duration of neutralization and nature of raft was absorbent. The raft of R9 formulation showed 98.94% release of PSS at 8?h in simulated gastric fluid. Fourier transform infrared spectroscopy showed no chemical interaction and differential scanning calorimetry indicated endothermic peaks at 250?°C for pantoprazole sodium sesquihydrate. tmax for the test and reference formulations were 8?±?2.345?h and 8?±?2.305?h, respectively. Cmax of test and reference formulations were 46.026?±?0.567?µg/mL and 43.026?±?0.567?µg/mL, respectively. AUC(0-t) of the test and reference formulations were 472.115?±?3.467?µg?×?h/mL and 456.105?±?2.017?µg?×?h/mL, respectively. Raft forming system successfully delivered the drug in controlled manner and improved the bioavailability of drugs.  相似文献   

9.
Context: Nanosuspensions (NSs) of poorly water-soluble drugs are known to increase the oral bioavailability.

Objectives: The purpose of this study was to develop NS of efavirenz (EFV) and to investigate its potential in enhancing the oral bioavailability of EFV.

Materials and methods: EFV NS was prepared using the media milling technique. The Box–Behnken design was used for optimization of the factors affecting EFV NS. Sodium lauryl sulfate and PVP K30 were used to stabilize the NS. Freeze-dried NS was completely re-dispersed with double-distilled filtered water.

Results: Mean particle size and zeta potential of the optimized NS were found to be 320.4?±?3.62?nm and –32.8?±?0.4 mV, respectively. X-ray diffraction and differential scanning calorimetric analysis indicated no phase transitions. Rate and extent of drug dissolution in the dissolution medium for NS was significantly higher compared to marketed formulation. The parallel artificial membrane permeability assay revealed that NS successfully enhanced the permeation of EFV. Results of in situ absorption studies showed a significant difference in absorption parameters such as Ka, t1/2 and uptake percentages between lyophilized NS and marketed formulation of EFV. Oral bioavailability of EFV in rabbits resulting from NS was increased by 2.19-fold compared to the marketed formulation.

Conclusion: Thus, it can be concluded that NS formulation of EFV can provide improved oral bioavailability due to enhanced solubility, dissolution velocity, permeability and hence absorption.  相似文献   

10.
Background: The present study describes glycerosomes (vesicles composed of phospholipids, glycerol and water) as a novel drug delivery system for topical application of celecoxib (CLX) and cupferron (CUP) compound.

Aim: The goal of this research was to design topical soft innovative vesicles loaded with CLX or CUP for enhancing the efficacy and avoiding systemic toxicity of CLX and CUP.

Methods: CLX and CUP loaded glycerosomes were prepared by hydrating phospholipid-cholesterol films with glycerol aqueous solutions (20–40%, v/v). Box–Behnken design, using Design-Expert® software, was the optimum choice to statistically optimize formulation variables. Three independent variables were evaluated: phospholipid concentration (X1), glycerol percent (X2) and tween 80 concentration (X3). The glycerosomes particle size (Y1), encapsulation efficiency percent (Y2: EE %) and drug release (Y3) were selected as dependent variables. The anti-inflammatory effect of CLX and CUP glycerosomal gel was evaluated by carrageenan-induced rat paw edema method followed by histopathological studies.

Results: The optimized formulations (CLX2* and CUP1*) showed spherical morphology under transmission electron microscopy, optimum particle size of 195.4?±?3.67?nm, 301.2?±?1.75?nm, high EE of 89.66?±?1.73%, 93.56?±?2.87%, high drug release of 47.08?±?3.37%, 37.60?±?1.89% and high cumulative amount of drug permeated in 8?h of 900.18?±?50.24, 527.99?±?34.90?µg.cm?2 through hairless rat skin, respectively. They also achieved significant remarkable paw edema inhibition in comparison with the control group (p? Conclusion: Finally, the administration of CLX2* and CUP1* loaded glycerosomal gel onto the skin resulted in marked reduction of edema, congestive capillary and inflammatory cells and this approach may be of value in the treatment of different inflammatory disorders.  相似文献   

11.
Objective: Methylnaltrexone (MNTX), a peripherally restricted opioid antagonist with mu-opioid receptor selectivity, can reduce opioid activity in the gastrointestinal tract while sparing the pain relief afforded by opioids. Since the bioavailability of oral MNTX is low, it is necessary to explore the oral formulations of MNTX that increase its bioavailability.

Materials and methods: An MNTX-phosphatidylcholine complex (MNTX-PC) formulation was prepared. The physicochemical properties of MNTX-PC were analyzed, and its bioavailability was evaluated in rats. After 250?mg/kg of oral MNTX-PC, plasma samples were collected up to 9?h. The concentrations of the compound in rat plasma were quantified using LC/MS/MS.

Results: Two MNTX plasma concentration peaks were observed at 120 and 180?min for the MNTX-PC group and control (MNTX in a water solution). Tmax was 180?min, Cmax was 1083.7?±?293.9?ng/mL, and T1/2 was 496?min for the MNTX-PC group. For control, Tmax was 180?min, Cmax was 448.4?±?126.0?ng/mL, and T1/2 was 259?min. The AUC0–540 min for the MNTX-PC group was 5758.2?±?1474.2?ngh/mL; for control, 1405.9?±?447.8?ngh/mL. Thus, the relative bioavailability after the oral administration of MNTX-PC was 410% compared to that of control.

Conclusion: MNTX-PC formulation significantly enhanced the oral bioavailability of MNTX.  相似文献   

12.
Abstract

Objective: The aim of the study was to formulate, cyclodextrin (CD)-polyanhydride (PA) nanoparticles (CPNs) with rosuvastatin calcium (RCa) in order to enhance the poor oral bioavailability.

Methods: CPNs containing RCa/CD complexes were prepared by a modified solvent displacement method and morphological analyses, particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), DSC, FT-IR, XRD, 1H-NMR analyses were performed. In vitro release properties, release kinetics, cytotoxicity, in vitro permeability and pharmacokinetic studies were also studied. The stability of the formulations were evaluated during the storage period of 3?months.

Results: The physicochemical studies showed that the RCa/CD complexes were well incorporated into CPNs resulted in nanosized particles (215.22 and 189.13?nm) with homogenous size distribution (PDI: 0.203 and 0.182) with relatively high incorporation capacity (76.11 and 68.18%) for the CPN1 and CPN2 formulations respectively. Sustained release of RCa from CPNs were achieved. The cytotoxicity values showed that the safety of the formulations. According to permeability studies, pure RCa had lowest permeability data (3.08?×?10?7?cm?s?1 Papp value) while CPNs gained higher permeability data (1.36?×?10?5 and 1.12?×?10?5?cm?s?1 Papp values) for the CPN1 and CPN2 formulations respectively. CPN2 formulation was selected for pharmacokinetic studies and analyses results demonstrated that approximately 8-fold relative oral bioavailability enhancement compared to the pure RCa was achieved.

Conclusion: Considering the analyses results of the study, CPNs can be regarded as suitable, safe, functional oral delivery systems for RCa with enhanced oral bioavailability.  相似文献   

13.
This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8?±?18.69 to 797.7?±?12.45?nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC0-48?hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.  相似文献   

14.
Objective: To synthesize β cyclodextrin nanosponges using a novel and efficient microwave mediated method for enhancing bioavailability of Rilpivirine HCl (RLP).

Significance: Belonging to BCS class II RLP has pH dependent solubility and poor oral bioavailability. However, a fatty meal enhances its absorption hence the therapy indicates that the dosage form be consumed with a meal. But then it becomes tedious and inconvenient to continue the therapy for years with having to face the associated gastric side effects such as nausea.

Method: Microwave synthesizer was used to mediate the poly-condensation reaction between β-cyclodextrin and cross-linker diphenylcarbonate. Critical parameters selected were polymer to cross-linker ratio, Watt power, reaction time and solvent volume. Characterization studies were performed using FTIR, DSC, SEM, 1H-NMR and PXRD. Molecular modeling was applied to confirm the possibility of drug entrapment. In vitro drug dissolution followed by oral bioavailability studies was performed in Sprawley rats. Samples were analyzed using HPLC.

Results: Microwave synthesis yields para-crystalline, porous nanosponges (~205?nm). Drug entrapment led to enhancement of solubility and a two-fold increase in drug dissolution (P?Cmax
and AUC0-∞ increases significantly (Cmax of NS~ 586?±?5.91?ng/mL; plain RLP ~310?±?5. 74?ng/mL).

Conclusion: The approach offers a comfortable dosing zone for AIDs patients, negating the requirement of consuming the formulation in a fed state due to enhancement in drugs’ oral bioavailability.  相似文献   

15.
Genistein (GEN), is a natural dietary isoflavone, has been reported to show anticancer activities. However, its poor aqueous solubility and oral bioavailability limit its clinical application. We designed a novel genistein-loaded mixed micelles (GEN-M) system composed of Soluplus® and Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by organic solvent evaporation aimed to overcome the challenges of GEN’s poor solubility and then further improve its oral bioavailability. The optimized, spherical-shaped GEN-M was obtained at a ratio of 10:1 (Soluplus®:TPGS). The mean particle size of GEN-M was 184.7?±?2.8?nm, with a narrow polydispersity index (PDI) of 0.162?±?0.002. The zeta potential value of GEN-M was ?2.92?±?0.01?mV. The micelles solutions was transparent with blue opalescence has high the entrapment efficiency (EE) and drug loading (DL) of 97.12?±?2.11 and 3.87?±?1.26%, respectively. GEN-M was demonstrated a sustained release behavior when formed micelles shown in drug release in vitro. The solubility of GEN in water increased to 1.53?±?0.04?mg/mL after encapsulation. The permeability of GEN across a Caco-2 cell monolayer was enhanced, and the pharmacokinetics study of GEN-M showed a 2.42-fold increase in relative oral bioavailability compared with free GEN. Based on these findings, we conclude that this novel nanomicelles drug delivery system could be leveraged to deliver GEN and other hydrophobic drugs.  相似文献   

16.
This study aimed to evaluate the crystalline and amorphous carvedilol along with their lipidic mixtures using various instrumental techniques and to use response surface methodology in conjunction with factorial design to establish the functional relationships between operating variables (capmul GMS 50?K and cremophor RH 40).

The response variables selected are spectroscopic absorbance (Y 1), mean particle size in distilled water (Y 2) and in phosphate buffer pH 6.8 (Y 3), polydispersibility index (PDI) (Y 4) and zeta potential (Y 5).

The optimal formulations of crystalline and amorphous carvedilol-loaded nanoemulsions were composed of fixed levels, ?0.41 and ?0.42, of capmul GMS 50?K and cremophor RH 40, respectively. The predicted and observed values of Y 1Y 5 for blank nanoemulsions showed the percentage bias error of ?12.12%, ?10.25%, ?18.47%, +14.81 and ?2.89, respectively. The bias percent ranged between ?2.70% and ?29.41% for the responses Y 1Y 4 for both crystalline and amorphous carvedilol-loaded nanoemulsions, indicating high degree of prognosis. However, the bias percent values for the response variable Y 5 were 294.2% and 262.6%, for the crystalline and amorphous carvedilol-loaded nanoemulsions, respectively, possibly due to cationisation of emulsion droplets. The transmission electron microscopy of selected optimal nanoemulsions showed the spherical shape of globules with no signs of coalescence and precipitation of drug.

This study demonstrates the use of factorial design for the preparation of nanoemulsions of crystalline and amorphous carvedilol. The desirable goals can be obtained by systematic formulation approach in the shortest possible time.  相似文献   

17.
The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire® 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire® 44/14 (oil), 40% Solutol® HS 15 (surfactant), and 30% Transcutol® P (cosurfactant) (w/w) with 80?mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20?±?1.43 and 33.34?±?2.15?nm, and the melting points of them were 35.6 and 36.8?°C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0–t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.  相似文献   

18.
Encapsulation of Ganciclovir in lipophilic vesicular structure may be expected to enhance the oral absorption and prolong the existence of the drug in the systemic circulation. So the purpose of the present study was to improve the oral bioavailability of Ganciclovir by preparing nanosized niosomal dispersion. Niosomes were prepared from Span40, Span60, and Cholesterol in the molar ratio of 1:1, 2:1, 3:1, and 3:2 using reverse evaporation method. The developed niosomal dispersions were characterized for entrapment efficiency, size, shape, in vitro drug release, release kinetic study, and in vivo performance. Optimized formulation (NG8; Span60:Cholesterol 3:2 molar ratio) has shown a significantly high encapsulation of Ganciclovir (89?±?2.13%) with vesicle size of 144?±?3.47?nm (polydispersity index [PDI]?=?0.08). The in vitro release study signifies sustained release profile of niosomal dispersions. Release profile of prepared formulations have shown that more than 85.2?±?0.015% drug was released in 24?h with zero-order release kinetics. The results obtained also revealed that the types of surfactant and Cholesterol content ratio altered the entrapment efficiency, size, and drug release rate from niosomes. In vivo study on rats reveals five-time increment in bioavailability of Ganciclovir after oral administration of optimized formulation (NG8) as compared with tablet. The effective drug concentration (>0.69 µg/mL in plasma) was also maintained for at least 8?h on administration of the niosomal formulation. In conclusion, niosomes can be proposed as a potential oral delivery system for the effective delivery of Ganciclovir.  相似文献   

19.
This study investigates potentials of solid lipid nanoparticles (SLN)-based gel for transdermal delivery of tenoxicam (TNX) and describes a pharmacokinetic–pharmacodynamic (PK–PD) modeling approach for predicting concentration–time profile in skin. A 23 factorial design was adopted to study the effect of formulation factors on SLN properties and determine the optimal formulation. SLN-gel tolerability was investigated using rabbit skin irritation test. Its anti-inflammatory activity was assessed by carrageenan-induced rat paw edema test. A published Hill model for in vitro inhibition of COX-2 enzyme was fitted to edema inhibition data. Concentration in skin was represented as a linear spline function and coefficients were estimated using non-linear regression. Uncertainty in predicted concentrations was assessed using Monte Carlo simulations. The optimized SLN was spherical vesicles (58.1?±?3.1?nm) with adequate entrapment efficiency (69.6?±?2.6%). The SLN-gel formulation was well-tolerated. It increased TNX activity and skin level by 40?±?13.5, and 227?±?116%, respectively. Average Cmax and AUC0–24 predicted by the model were 2- and 3.6-folds higher than the corresponding values computed using in vitro permeability data. SLN-gel is a safe and efficient carrier for TNX across skin in the treatment of inflammatory disorders. PK–PD modeling is a promising approach for indirect quantitation of skin deposition from PD activity data.  相似文献   

20.
Harmine (HM), a phytoconstituent has wide range of pharmacological activities including antimicrobial, antifungal, antioxidative, and anticancer. HM has shown promising anticancer activity against liver cancer cells. However, poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism, and rapid elimination due to glucuronidation/sulfation limit clinical utility of HM. In order to overcome the drawbacks of HM, the current work reports preparation of HM-loaded galactosylated pluronic F-68 (PF68)-Gelucire® 44/14 (GL44) mixed micelles (HM-MM). 32 factorial design was used to investigate the effect of formulation variables on formation HM-loaded mixed micelles. Solvent evaporation method was used for preparation of HM-MM. The optimized HM-MM was evaluated for size, percent drug entrapped (EE), in vitro HM release, oral bioavailability, and biodistribution in rats. HM-MM with an average size 277.5?±?3.24?nm had an EE of 86.5?±?1.51% w/w. HM-MM released HM in a controlled manner. Additionally, HM-MM showed significant enhancement in oral bioavailability (around six-folds) of HM when compared to HM alone. Further, HM-MM showed around sevenfold higher amount of HM in the liver when compared to HM alone revealing efficient drug targeting capability. Such significant improvement in oral bioavailability of HM when formulated into mixed micelles could be attributed to solubilization of hydrophobic HM into micellar core along with P-gp inhibition effect of both galactosylated PF68 and GL44. Thus, the present work highlights galactosylated PF68 and GL44 mixed micelles as an efficient carrier system having drug targeting capability and potential to enhance bioavailability of BCS class II drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号