首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
镁合金在电子工业中的快速发展对装饰性能提出了更高的要求.主要研究了如何在微弧氧化的同时进行氧化着色.膜层制备选取的基材为AZ91,电解溶液由硅酸盐为主的碱性溶液组成,配方为:Na2SiO3 5~30g/L,KMnO4 1~20g/L,NaOH 1~5g/L,KF 5~8g/L,Na3 C6H5O70.5~2g/L,EDTA 0.5~2g/L.在电解液中添加着色盐KMnO4,形成了颜色各异的黄色陶瓷膜层.研究发现,膜层呈现出黄色主要是由于在膜层中生成了Mg6MnO8相,该物相在氧化膜中含量不同和分布差异将导致样品颜色深浅不同.  相似文献   

2.
With increasing oil spill accidents, the development of effective and low-cost adsorbents with good hydrophobicity is highly desirable. To cope with the clean-up of oil spill, a hydrophobic adsorbent was synthesized by electrospinning using inexpensive raw materials. By ingeniously combining melamine with polyacrylonitrile (PAN) as well as SiO2 nanoparticles, a novel composite nanoadsorbent named SiO2@MUF/PAN nanofibrous membrane was prepared and characterized. The adsorbents were conducted based on uniform nanofibre networks and were abundant with narrow slit-like pores, which are significant for the retention of oil and organic solvents. The hydrophobicity of the as-prepared membranes was enhanced with an increasing amount of SiO2, and the highest water contact angle was 128.3°. Furthermore, the combination of SiO2 and melamine increased the thermal stability of the membranes. With the unique pore structures and hydrophobicity, the membranes were able to selectively remove not only oil but also organic solvents from water surface. The adsorption capacities of the membranes with SiO2 nanoparticles (0.9 wt%) were the highest and that for peanut oil, diesel, pump oil and engine oil were 19.09, 13.12, 18.48 and 22.67 g g?1, respectively, while that for organic solvents ranged from 12.92 to 22.16 g g?1. After 10 adsorption–regeneration cycles, the adsorption capacity was still around 35% of the initial value. Due to its high oil adsorption capacity, excellent reusability and the cost-effective hydrophobic, SiO2@MUF/PAN have a great potential for oil spill clean-up.  相似文献   

3.
This paper reports on the effect of the chemical composition on the glass structure, the coefficients of thermal expansion and the fluorescence properties of Sm3+-doped La2O3–Al2O3–SiO2-glasses. The silica concentration was varied between 50 and 70 mol% and the La2O3:Al2O3 ratio between 50:50 and 30:70. The glass formation and the densities are evaluated and FTIR reflectance spectra, coefficients of thermal expansion and fluorescence lifetimes are determined. It is shown that high SiO2 concentrations and low La2O3:Al2O3 ratios result in relatively high fluorescence lifetime (2.19 ms, 4G5/2) and low coefficients of thermal expansion (4.6 × 10?6/K). The coefficients of thermal expansion and the fluorescence lifetimes show a linear dependency on the ratio LaO3/2/(AlO3/2 + SiO2).  相似文献   

4.
A composite membrane of silica (SiO2)/sulfonated poly (ether ether ketone) (SPEEK) nanofiber mat impregnated with Nafion was fabricated and evaluated for its potential use as a proton conductor for high temperature polymer electrolyte membrane fuel cells. The supporting SiO2/SPEEK composite nanofibrous skeleton was prepared via electrospinning of a mixture of SPEEK solution and silica sol prepared from tetraethyl orthosilicate (TEOS). The control of hydrolysis and condensation of TEOS enabled to form entangled SiO2 networks miscible to SPEEK solution. The prepared SiO2/SPEEK nanofiber mat was impregnated with Nafion® to completely fill the inter-fiber voids to prepare a dense membrane. The morphology of the nanofiber mat and the composite membrane were observed by scanning electron microscopy and the presence of SiO2 and SPEEK in the prepared nanofibers was confirmed by FTIR spectroscopy. Proton conductivity and swelling of the membrane were measured. The H2/O2 single cell test using the composite membrane as a PEM was performed. At a high temperature and low humidity condition (120 °C and 40 % RH), the maximum power density was 170 mW/cm2 for the Nafion-impregnated SiO2/SPEEK (40/60 w/w) composite nanofiber membrane that was 2.4 times higher than recast Nafion (71 mW/cm2) while SPEEK film failed.  相似文献   

5.
This article focuses on the development of phase transformation and morphology of low-grade pyrolusite during carbothermal reduction using microwave heating. The XRD, SEM and EDS results show that selective carbothermal reduction of MnxOy and FexOy in pyrolusite is easy to realize with microwave heating, which can reduce MnO2 to MnO, and Fe2O3 to Fe3O4, rather than FeO. It was also observed that the phases of Mn2O3, Mn3O4 and MnO appear at 300?°C, 450?°C and 500?°C, respectively. The MnO phase, formed by the accumulation of MnO sphere particle with a diameter of 266.75–420.05?nm, is loose and porous. At a temperature of 750?°C, the Mn2SiO4 layer of about 316?nm in thickness, tightly wrapping SiO2 particle is generated at the interface between MnO and SiO2 embedded with MnO. Above 650?°C, Fe2O3 in pyrolusite can be transformed into a very dense Fe3O4 phase.  相似文献   

6.
Introduction: A bioartificial kidney, which consists of a continuous hemofilter and a bioartificial tubule device using proximal tubular epithelial cells (LLC‐PK1), is desired to develop for preventing long‐term complications in hemodialysis patients. A bioartificial tubule device should function for a long duration in terms of the simplicity and the economy. Continuous hemofiltration with 10 L/day of filtrate could maintain plasma urea, creatinine and β2‐microglobulin in patients at low levels compared to those in standard hemodialysis patients. Methods: 6 bioartificial tubule devices, in which LLC‐PK1 cells were grown on the inner surfaces of hollow fiber capillaries (membrane area: 0.4 m2, 1600 fibers), were used to evaluate the transport ability of H2O, glucose and Na+, and leak rates of urea and creatinine for 2 weeks when the medium containing 50 mg/dL of urea and 5.0 mg/dL of creatinine was perfused inside of the cell‐attached membranes and another medium containing 2.5 g/dL of albumin was perfused outside of the membranes. Scanning electron micrograph of cross‐sectional findings of the hollow fibers was taken at 6, 10, and 14 days after formation of confluence. Results: By conversion into 1 m2 of membrane area, transport of H2O, glucose, and Na+ was 6266 ± 995 mL/day, 22832 ± 7240 mg/day, and 941.3 ± 180 mEq/day, respectively at 6 days after confluence. Leak rates of urea and creatinine across the cell‐attached membranes were 22 ± 6.1% and 19.2 ± 4.9 with albumin addition, whereas 13.1 ± 1.9% and 12.2 ± 1.6 without albumin addition. Transport capacity of these components and the leak rates had continued for 10–13 days, and decreased thereafter because of the formation of the multilayers. Bioartificial tubule devices with membrane area 1.0 m2 can reach the targeted amounts of H2O, glucose, and Na+ transports when 6 L of 10 L/day of hemofiltrate has to be regenerated, substituting 4 L with meal and drinks.  相似文献   

7.
The novel graphene oxide (GO)/silica (SiO2)/polyacrylonitrile (PAN) mixed matrix membranes (MMMs) with high filtration flux and excellent antifouling performance were designed and fabricated in situ by the method of non-solvent induced phase separation (NIPS) from the precursor of PAN hybridized with GO, tetraethoxysilane and 3-aminopropyltriethoxysilane. The influences of GO sheets on the pore and chemical structure, hydrophilic nature and filtration performance of derived GO/SiO2/PAN MMMs were investigated by the scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray, Fourier transform infrared spectrometer, pure water contact angles and filtration performance. Results indicated that in situ incorporation of GO sheets and SiO2 molecules into PAN matrix via NIPS reconstructs the porous structure of derived GO/SiO2/PAN MMMs with the upright finger-like holes, porous bottom, thinner top layer and high porosity. The spontaneous surface migration or segregation of hydrophilic GO sheets and SiO2 molecules as well as their synergistic interaction occurred during NIPS greatly ameliorate the top surface structure and property of derived membranes with smoother surface, uniform pore structure and good hydrophilicity. The derived GO/SiO2/PAN MMMs exhibit a high water filtration flux of 387 L m?2 h?1 with the bull serum albumin rejection rate up to 99% and significant enhancement of antifouling performance.  相似文献   

8.
The Pb/S/1,2-ethanedithiol composite thin films were successfully deposited on TiO2 nanorod arrays by spin-coating step-by-step 5 mmol dm?3 Pb(NO3)2, Na2S and 1% 1,2-ethanedithiol solution and their chemical compositions can be easily adjusted by changing the concentration of Na2S solution from 5 to 3.5 mmol dm?3 and 2 mmol dm?3. The average crystal sizes of Pb/S/1,2-ethanedithiol quantum-dots decreased from 7.9 to 7.1 nm and 6.5 nm with the decrease of the concentration of Na2S solution and the chemical bonding of Pb2+ and S in EDT was chelation of the penta-heterocycle in Pb/S/1,2-ethanedithiol composite thin films. All solid-state Pb/S/1,2-ethanedithiol composite thin film sensitized TiO2 nanorod array solar cells using 5, 3.5, 2 mmol dm?3 Na2S solution exhibited the photoelectric conversion efficiency of 2.68, 3.41 and 4.51% under the illumination of simulated AM 1.5 sunlight (100 mA cm?2).  相似文献   

9.
Among different strategies to reduce costs in microalgae dewatering process via cross-flow filtration, the one related to membrane material was investigated in order to be decreased. Several materials were tested, starting with the ones commonly used in membrane technology [ceramic, polysulfone (PSf) and polyacrylonitrile (PAN)] to the ones generally employed in packaging industry [acrylonitrile butadiene styrene (ABS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA)], the latter being considerably cheaper. Experiments carried out showed promising results in terms of permeabilities for PSf–Pluronic® F127 blended membranes and PAN membranes (11 ± 1 L/h/m2/bar and 22 ± 1 L/h/m2/bar, respectively, instead of 2 ± 2 L/h/m2/bar of PSf membranes), but with high related costs. PLA membranes showed good mechanical properties, biodegradability and price, but low permeability values (5 ± 1 L/h/m2/bar). PETG membranes showed attractive results in terms of costs and permeability, but poor mechanical properties. The polymer that offered the best results was the ABS that reached membrane permeabilities of 19 ± 1 L/h/m2/bar, maintaining good mechanical properties while filtering the microalgae Phaeodactylum tricornutum Bohlin. Thus, a novel functionality was found for these not so common polymers in microalgae dewatering. This indicates that use of these materials could also be considered in other aqueous micro/ultrafiltration applications. In addition, the biodegradable PLA polymer introduces a new concept of cheap and environmental friendly membrane in this application.  相似文献   

10.
The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO2 nanorods were attached on the graphene oxides (GOs) to form the MnO2/GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g?1 and a stable capacity of 705.8 mAh g?1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g?1 and the stable capacity of 95.6 mAh g?1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.  相似文献   

11.
In the present study, the microencapsulated phase change material with palmitic acid as core and inorganic SiO2 shell was successfully fabricated by a sol–gel method in alkaline medium via sodium silicate precursor. The chemical compositions, crystalloid phase, microstructure and morphology of PA@SiO2 microcapsule were studied by Fourier transform infrared spectroscopy, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to determine the thermal properties and thermal stability of microcapsules, respectively. According to the XRD and FT-IR results, all the characteristic peaks of PA and SiO2 were observed and there is no chemical reaction between them. Scanning electron microscopy images indicated that the microcapsule synthesized in pH 11 had a perfect spherical shape with smooth surfaces compared with other samples, and transmission electron microscopy images confirm that the PA have been well encapsulated by SiO2. Differential scanning calorimetry analysis showed that the microcapsules indicated similar phase change behaviors as those of pristine PA, which melt at 67.2?°C with a latent heat of 111.2 J/g and freezing at 56.5?°C with a latent heat of 103.2 J/g. TGA analysis indicated that the thermal stability of the PA was also improved due to the protection of SiO2 shell toward the encapsulated PA.  相似文献   

12.
SiCf/SiO2 composites had been fabricated efficiently by Sol-Gel method. The oxidation behavior, thermal shock property and ablation behavior of SiCf/SiO2 composites was investigated. SiCf/SiO2 composites showed higher oxidation resistance in oxidation atmosphere, the flexural strength retention ratio was larger than 90.00%. After 1300 °C thermal shock, the mass retention ratio was 97.00%, and the flexural strength retention ratio was 92.60%, while after 1500 °C thermal shock, the mass retention ratio was 95.37%, and the flexural strength retention ratio was 83.34%. After 15 s ablation, the mass loss rate was 0.049 g/s and recession loss rate was 0.067 mm/s. The SiO2 matrix was melted in priority and becomes loosen and porous. With the ablation going on, the oxides were washed away by the shearing action of the oxyacetylene flame. The evaporation of SiO2 took away large amount of heat, which is also beneficial to the protection for SiCf/SiO2 composites.  相似文献   

13.
Five kinds of amino-functionalized (polyaniline, poly(1,2-diaminobenzene), poly(1,3-diaminobenzene), poly(diphenylamine), and poly(o-toluidine)) Fe3O4/SiO2 submicron composites (SCs) were prepared. The SEM and TEM results showed that these SCs possessed a sphere-like core/shell structure with an average diameter of ~500 nm. The XRD results indicated good crystallinity of Fe3O4 core, the amorphous SiO2, and amino-functionalized shells. The XPS results confirmed that amino groups were plentiful rich outside the surface of these SCs which acted as the effective groups for adsorbing the metal ions. These SCs showed a good thermal stability at 20–250 °C. The high saturation magnetization of 60–70 emu/g is better than other similar reports. In3+ adsorption coefficients from aqueous solution by these SCs were higher than 106 mL/g, indicating the higher selectivity and affinity to In3+ compared with Cd2+ and Hg2+ ions. In addition, these SCs could be magnetically reclaimed within 30 s and regenerated with acid after adsorption. The adsorption capabilities only decreased by 6 % after five cycles. The present work indicates that the amino-functionalized Fe3O4/SiO2 SCs are promising for removal of In3+ ions in field application.  相似文献   

14.
This study reports the preparation and characterization of the spinel CoCr2O4. In order to obtain 20% CoCr2O4/80% SiO2 and 50% CoCr2O4/50% SiO2 (mol%) nanocomposites, we have used a versatile pathway based on the thermal decomposition of some particular precursors, Co(II) and Co(III) carboxylate-type complex combinations, inside the SiO2 matrix. The ligands of these coordination compounds result in the redox reaction between Co(II) and Cr(III) nitrates and 1,3-propylene glycol by heating at 150 °C of the gels (tetraethylorthosilicate–metal nitrates–1,3-propylene glycol). The as-obtained precursors, embedded in silica gels, were characterized by FT-IR spectrometry and thermal analysis. Both precursors decompose up to 350 °C, leading to the corresponding metal oxides inside the silica matrix. X-ray diffraction of the powders annealed at different temperatures has evidenced the formation of CoCr2O4 starting with 400 °C for 20% CoCr2O4/SiO2 and 300 °C for 50% CoCr2O4/SiO2. This behaviour can be explained by the fact that, by thermal decomposition of the chromium carboxylates, a nonstoichiometric chromium oxide Cr2O3+x is formed. At ~ 400 °C, Cr2O3+x turns to α-Cr2O3, which interacts with CoO leading to cobalt chromite nuclei inside the pores of the silica matrix. CoCr2O4 has been obtained as nanocrystallites homogenously dispersed within the silica matrix as resulted from XRD, TEM and EDX mapping, with mean particle size in the range 5–20 nm.  相似文献   

15.
Reaction mechanisms, microstructures and tensile properties of the aluminum matrix composites made from Al-SiO2-Mg system were investigated. When the temperature increased from room temperature to around 761 K, Mg dissolved into Al to form Mg-Al alloy. As the temperature increased to about 850 K, the remaining Mg reacted with SiO2 to form MgO, Mg2Si and Si as expressed in step reaction I: 6Mg + 2SiO2  4MgO + Mg2Si + Si. Finally, with a further increase in temperature, the remaining SiO2 reacted with Al to produce Al2O3 and Si, while MgO reacted with Al2O3 to form MgAl2O4 as expressed in step reaction II: 4Al + 3SiO2 + 2MgO  2MgAl2O4 + 3Si. The Si also dissolved into matrix Al to form Al-Si alloy. Accordingly, its reaction process consisted of two steps and their apparent activation energies were 218 kJ/mol and 192 kJ/mol, respectively. As compared to the composites prepared by Al-SiO2 system, its density increased from 2.4 to 2.6 g/cm3, and its tensile strength and elongation increased from 165 MPa and 3.95% to 187 MPa and 7.18%, respectively.  相似文献   

16.
ZnS–SiO2 targets have been directly soldered to copper backing plates at 180°C in air using an Sn56Bi4Ti(Ce, Ga) filler. The affinity of cerium to oxygen protects titanium from oxidation, allowing titanium to react with ZnS–SiO2 sputtering target. The shear strengths are 1.7, 8.7, and 1.3 MPa for ZnS–SiO2/ZnS–SiO2, copper/copper and ZnS–SiO2/copper joints, respectively. EPMA elemental mapping shows that aging test at 120° for 100 hours enhanced the segregation of titanium at the ZnS–SiO2/solder interfaces. The shear strength of ZnS–SiO2/copper joint after aging test is 1.3 MPa that shows no trace of degradation compared to the initial quality of the samples.  相似文献   

17.
Dicalcium phosphate dihydrate (DCPD) brushite coating with flake like crystal structure for the protection of AZX310 and AM50 magnesium (Mg) alloys was prepared through chemical deposition treatment. Chemical deposition treatment was employed using Ca(NO3)2·4H2O and KH2PO4 along with subsequent heat treatment. The morphological results revealed that the brushite coating with dense and uniform structures was successfully deposited on the surface of AZX310 and AM50 alloys. The X-ray diffraction (XRD) patterns and Attenuated total reflectance infrared (ATR-IR) spectrum also revealed the confirmation of DCPD layer formation. Hydrophilic nature of the DCPD coatings was confirmed by Contact angle (CA) measurements. Moreover, electrochemical immersion and in vitro studies were evaluated to measure the corrosion performance and biocompatibility performance. The deposition of DCPD coating for HTI AM50 enables a tenfold increase in the corrosion resistance compared with AZX310. Hence the ability to offer such significant improvement in corrosion resistance for HTI AM50 was coupled with more bioactive nature of the DCPD coating is a viable approach for the development of Mg-based degradable implant materials.  相似文献   

18.
《Materials Letters》2001,47(4-5):241-246
Membranes formed by polybenzimidazole and silicotungstic acid supported on silica have been prepared. The membranes were characterized in order to evaluate their proton conduction, mechanical stability and structural characteristics. Silica produced a beneficial effect on proton conduction of the membranes. The membranes with 50 wt.% of SiWA–SiO2/PBI was mechanically stable and gave proton conductivity of 1.2×10−3 S cm−1 at 160°C and 100% relative humidity. All the materials prepared had amorphous structure.  相似文献   

19.
Influence of hydrothermal synthesis conditions on the gyrolite specific surface area, dominant pore size and their differential distribution by the radius were determined. The synthesis of gyrolite has been carried out in unstirred suspensions within 32, 48, 72, 120, 168 h at 200°C temperature from a stoichiometric composition (the molar ratio of CaO/SiO2 was equal to 0.66 where water/solid ratio of the suspension was equal to 10.0) of the initial CaO and SiO2·nH2O mixture. It was found that the structure of gyrolite and the shape of dominated pores (from pores between parallel plates to cylindrical pores) changes prolonging the duration of hydrothermal synthesis. The stable gyrolite crystal lattice was formed only after 120 h of isothermal curing. Its specific surface area S BET = 38.28 m2/g, the radius of dominant plate pores r p = 30–40 Å, the cumulative pore volume ΣV p = 0.08 cm3/g. It was determined that the pores with 4.0–5.0 nm radius were dominated in gyrolite structure after 168 h of synthesis. It was estimated that the ion exchange between gyrolite with less orderly structure in Zn(NO3)2 + NH4OH alkaline solution ( ${c_{{{\text{Zn}}^{2+}}}}$ —0.3 g/dm3) proceeds more faster and effectively.  相似文献   

20.
Sole components of titania (TiO2), silica (SiO2) nanoparticles, and binary TiO2–SiO2 nanocomposites with various molar ratios of silica contents were prepared by modified sol–gel method. The samples were calcined at 500 °C for 5 h and characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, Brunauett–Emmett–Teller (BET), and photoconductivity. The crystallite size for TiO2/SiO2 nanocomposites was calculated using Scherrer’s formula and found to be 5 nm for TiO2 nanoparticles. The binary oxide shows the anatase type of TiO2 at the mole ratio up to 80 mol% of TiO2 added. The band gap for as-synthesized nanocomposites was calculated and it was found that the band gap decreases with increase of SiO2 content and then decreases with excess SiO2 content. FTIR confirms that both TiO2 and SiO2 phases have been formed. The BET surface area for TiO2/SiO2 nanocomposite is found to be 303 m2/g, and pore size distribution has an average pore diameter about 10 nm for 40 mol% of TiO2 added. It also confirms the absence of macropores and the presence of micro and mesopores. The field-dependent dark and photoconductivity studies reveal that the dark and photocurrent increase linearly with applied field confirming the ohmic nature of the electric contacts. The dark and photocurrent increase slightly with increase of SiO2 content and decrease with excess amount of SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号