首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In this study, Dy-doped ZnO (Zn0.8?4x Dy x O y (0.05≤x≤0.10)) samples were prepared by the solid-state reaction method, and were characterized by using the XRD, SEM and EDX techniques. The SEM results clearly demonstrate that the grains of the samples are very well connected to each other and tightly packed. From the XRD and EDX spectra, it has been concluded that the substituting of Dy3+ for Zn2+ in ZnO causes almost no change in the hexagonal wurtzite structure of ZnO. However, the lattice parameters a and c of Dy-doped ZnO are slightly different from those of the pure ZnO. These observations may be due to the slightly different ionic sizes of Zn2+ and Dy3+ ions. Our magnetization measurements (MH) and (MT) show paramagnetic behavior with a negative value of the Curie–Weiss temperature, corresponding to an antiferromagnetic exchange coupling in Dy-doped ZnO. Since, for low magnetic fields the extrapolation of the H/M versus temperature curves cut the T axes at negative values, we believe that the substitution of Dy in ZnO causes an overwhelming antiferromagnetic interaction for x≤0.10.  相似文献   

5.
Single-phase spinel ferrite Ni 1?x Zn x Ga y Fe 2?y O 4 with (0.0≤x≤0.5) and y=0.5 samples were synthesized using solid-state reaction technique. These ferrites were investigated using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer effect (ME) spectroscopy. XRD patterns confirmed the formation of single-phase cubic spinel ferrites for all samples. Lattice parameter was found to decrease with the introduction of Ga 3+ in NiFe 2 O 4, and then to increase with the increasing of Zn 2+ content x. ME measurements illustrated a strong dependence on the zinc concentration. The cation distribution calculated from the ME spectra at room temperature indicated that the Ga 3+ ion substituted iron in both octahedral B and tetrahedral A- sites. Zn 2+ ions firstly introduced in A- site, and for higher x, they distribute in both B- and A- sites. VSM measurements indicated that the change in the value of saturation magnetization can be explained using the cation distribution obtained from ME measurements. The coercivity values can be interpreted on the basis of magneto-crystalline anisotropy.  相似文献   

6.
In this paper, we investigate the structural and magnetic properties of the Gd2?x Ho x Ru2O7 (0≤x≤2) pyrochlores. X-ray diffractograms of all samples studied presented a cubic pyrochlore type crystal structure with lattice parameters varying linearly in accordance to Vegard’s law. It is shown that by substituting Gd by Ho one can tune the magnetic order of this system moving from antiferromagnetic (in the absence of Ho) to ferromagnetic (in the absence of Gd).  相似文献   

7.
8.
We present the structural and magnetic properties of Pr0.6Sr0.4Mn1?x Fe x O3 (x=0, 0.1, 0.2, and 0.3) compounds. Samples have been prepared by the ball milling method. Rietveld refinements of the X-ray powder diffraction data show that all our synthesized samples are single phase and crystallize in the orthorhombic symmetry with the Pnma space group. The unit cell volume increases with increasing the Fe content. The infrared spectrum shows two active bands, which can be ascribed to the internal stretching and bending modes. The magnetization measurements versus temperature showed that Fe doping leads to a weakening of the ferromagnetic ordering at low temperature, the Curie temperature T C decreases from 300 K for x=0.0 to 88 K for x=0.2. The magnetization versus applied magnetic measurements at low temperature lead to conclude that the substitution of Mn3+ ions by Fe3+ ions triggers antiferromagnetic interactions between the Fe3+ and Mn4+ spins, and also the magnetization versus applied magnetic measurements at room temperature shows a small hysteresis loop and a low coercive field, which indicates that the samples are superparamagnetic.  相似文献   

9.
In this paper, ZnFe2O4 spinel ferrite nanoparticles with different grain sizes at different annealing temperatures have been synthesized using the starch-assisted sol–gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and vibrating sample magnetometer. The X-ray diffraction (XRD) patterns demonstrated that the ZnFe2O4 nanoparticles consist of single-phase spinel structure with crystallite sizes 4.81, 8.72, 12.06, 29.32, and 72.60 nm annealed at 400, 600, 800, 1000, and 1200 °C, respectively. Field emission scanning electron microscopy reveals that particles are of spherical morphology at lower annealing temperature and hexagonal-like morphology at higher temperature. An infrared spectroscopy study shows the presence of two principal absorption bands in the frequency range around 525 cm?1 (ν 1) and around 350 cm?1 (ν 2), which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site-related Raman modes in zinc ferrite nanoparticles with change of particle size. The nanocrystalline ZnFe2O4 samples (4.81, 8.72, 12.06, 29.32 nm) show ferrimagnetic behavior, and bulk sample (72.60 nm) shows paramagnetic behavior. This change in magnetic behavior is due to change of cation distribution in ZnFe2O4 nanoparticles with decrease of particle size.  相似文献   

10.
11.
In this study, nanocrystalline Li–Zn ferrites with the chemical composition Li0.5Zn x Fe2.5?x O4 (where x=0, 0.1,0.2,0.3,0.4,0.5) were synthesized by the glycine–nitrate process using glycine as a fuel, nitrate as an oxidizer and microwave oven as a heat source. The combustion reaction was studied by differential thermal analysis and thermogravimetry. The experimentally determined combustion reaction is extremely exothermic and it occurs at 170 °C. The as-synthesized powders were characterized by X-ray diffraction technique. X-ray diffraction data shows that nanocrystalline Li–Zn ferrite powders with a spinel structure have been formed successfully in all samples. Morphological studies using scanning electron microscopy and field emission scanning electron microscopy show agglomerated clusters with a lot of pores attributed to the large amount of gases released during the combustion synthesis with the particle size of 20–40 nm. The magnetic measurements on the as-synthesized powders and compacted samples were carried out using a vibrating sample magnetometer and an inductance/capacitance/resistance meter, respectively. Saturation magnetization increases with the increase in zinc concentration up to x=0.2 and then it decreases with the increase in the zinc content. In addition, maximum magnetic permeability also obtained for the sample with x=0.2 at different frequencies.  相似文献   

12.
We investigated in this paper a new mixture +3/+2 B cations delafossites by the doping at Cr3+ sites in CuCrO2 by nonmagnetic cation Ti2+. Ceramics of CuCr1?x Ti x O2 (0≤x≤0.1) were prepared via solid state synthesis techniques in a controlled atmosphere of O2. The compound crystallized into the 3R delafossite phase with hexagonal structure. The slightly different size in B cations induced a slightly variation in unit cell parameters. We modulate the spin chirality by the effect of spin dilution for Ti2+ on the structural and magnetic properties of delafossite CuCrO2 having a S=3/2 antiferromagnetic triangular lattice (ATL).  相似文献   

13.
14.
Manganese doped nickel ferrite (Mn x Ni1?x Fe2 O 4: x = 0.0–0.5) spinel nanoparticles (NPs) were successfully prepared by a facile microwave combustion method (MCM) using urea as the fuel. The prepared samples were characterized by different techniques. Powder X-ray diffraction (XRD) analysis was confirmed the formation of a single-phase NiFe2 O 4 spinel structure. The average crystallite sizes of the samples were in the range of 11.49 to 17.24 nm, which was confirmed by Sherrer’s formula. The morphology of the samples showed a nanoparticle-like structure with smaller agglomeration, which was confirmed by high-resolution scanning electron microscopy (HR-SEM). The particle size diameter ranges from 15 to 20 nm, which was confirmed by high-resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which was also evidence for the formation of single pure phase. Selected area electron diffraction (SAED) analysis showed well crystalline nature. UV-visible diffuse reflectance spectra (DRS) and photoluminescence (PL) spectrum analysis was used to calculate the optical band gap, and the values are slightly increased (2.02 to 2.42 eV) with increasing the Mn-dopant, due to the decreasing of particle size, which may be due to the quantum confinement effect. Magnetic properties of the samples were analyzed by vibrating sample magnetometer (VSM) technique, which showed the magnetization (M s ) value of the samples are increased with increasing Mn content and reach a maximum value of 67.82 emu/g for Mn0.5Ni0.5Fe2 O 4 sample. Photo-catalytic activity of the samples was measured and showed the photocatalytic degradation (PCD) of methylene blue dye with good results. The catalyst was magnetically recycled and reused five consecutive cycles and showed good reproducibility without change of catalytic activity.  相似文献   

15.
16.
Studies of the structural, magnetic, and magnetocaloric properties of polycrystalline Pr0.6La0.1Mg0.3Mn1?x Fe x O3 (0≤x≤0.3) perovskite manganites were carried out. The compounds were synthesized using the sol–gel method. X-Ray diffraction (XRD) analysis using Rietveld refinement shows that all our compounds crystallize in the orthorhombic structure with the Pnma space group. The surface morphology and elemental analysis of both samples were carried out by scanning electron microscopy (SEM) and the energy dispersive X-ray technique (EDX), respectively. Magnetization measurements versus temperature under magnetic applied field of 0.05 T showed that all our investigated samples display a ferromagnetic-paramagnetic transition. The substitution of Mn by Fe leads to an increase of the Curie temperature T C from 64 K for x=0 to 380 K for x=0.3. The Arrott plots show that the phase transition is of second order. A large magnetic entropy change |ΔS M | deduced from isothermal magnetization curves has been recorded in the parent compound Pr0.6La0.1Mg0.3MnO3 reaching a maximum of 0.79 J/kg K under a magnetic applied field of 2 T close to T C . Our results on magnetocaloric properties suggest that the Pr0.6La0.1Mg0.3MnO3 compound is attractive as a possible refrigerant for low temperature magnetic refrigeration.  相似文献   

17.
18.
19.
The crystal structure and magnetic properties of single phase Pr1?x Gd x Co4Si compounds with x=0,0.2,0.4,0.6,0.8, and 1.0 have been investigated. X-ray analysis reveals that the compounds crystallize as a single phase having the hexagonal CaCu5-type structure with the space group P6/mmm. The substitution of Gd for Pr causes a linear decrease of the unit-cell parameters a and c, and the unit-cell volume V. Magnetic measurements indicate that all samples are ordered magnetically below the Curie temperature. The saturation magnetization at 4.2 K decreases upon the Gd substitution up to x=0.6, and then increases.  相似文献   

20.
Ni2+-doped ZnO diluted magnetic semiconducting materials (Zn1?x Ni x O with x=0.01,0.02,0.03,0.04,0.05) were synthesised by the co-precipitation method. All synthesised samples were sintered at 600 °C for 6 hours. The effects of Ni2+ ion-doping on the structural, morphological, optical and magnetic properties of ZnO were investigated using powder X-ray diffraction, field emission SEM, UV–DRS spectroscopy, photoluminescence and vibrating sample magnetometry. The XRD patterns of pure and Ni-doped ZnO samples revealed single phase hexagonal wurtzite structure. The SEM analysis revealed the morphology of prepared samples, and the chemical compositions of all samples were analysed using exhibit energy density X-ray analysis (EDAX) characterisation. The absorption and emission properties revealed the effect of Ni2+ doping in ZnO samples. All Ni2+ ion-doped samples showed ferromagnetism at room temperature. The observed results are here analysed and reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号