首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnetoresistance, irreversibility fields, and critical current density were studied for a commercial 2G tape at the two relative orientations of magnetic field and superconductor plane. The critical temperatures of this tape of T c50 % = 91.5 K and T c0 = 90 K and the width of superconducting transition of ΔT = 1.5 K were obtained. The widths of the transition from the normal to the superconducting state do not increase at the applied magnetic field up to 90 kOe and do not depend on the orientation of the magnetic field with respect to the tape plane. The irreversibility field values were obtained and successfully fitted as a function of temperature using the formula: \(H_{\text {irr}} =H_{\text {irr0}} \left ({1-\frac {T}{T_{\text {c0}} }} \right )^{n}\). The irreversibility fields show an anisotropy, and at the liquid nitrogen temperature, they reach H irr = 430 kOe and H irr = 106 kOe for the parallel and perpendicular directions, respectively. The anisotropy ratio amounts to γ = 4 at 77 K and is small in comparison with other high-temperature superconducting materials. The critical current density of this tape was found to be of the order of 106 A cm?2 at 77 K in the self-magnetic field.  相似文献   

2.
We study the magnetic field vs. temperature (HT) and pressure vs. temperature (PT) phase diagrams of the T c ≈ 5.5 K superconducting phase in Pd x Bi2Te3 (x ≈ 1) using electrical resistivity versus temperature measurements at various applied magnetic fields (H) and magnetic susceptibility versus temperature measurements at various applied magnetic fields (H) and pressure (P). The HT phase diagram has an initial upward curvature as observed in some unconventional superconductors. The critical field extrapolated to T = 0 K is H c (0) ≈ 6–10 kOe. The T c is suppressed approximately linearly with pressure at a rate d T c /d P ≈ ?0.28 K/GPa.  相似文献   

3.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

4.
The effect of CdTe addition on YBa2Cu3O7?δ (CdTe) x (x = 0–0.10) has been studied. XRD patterns showed the presence of impurities including CdTe for x ≥ 0.05 wt%. The resistance versus temperature curves showed metallic behavior for all samples. The onset temperature T c onset for all samples is between 90 and 92 K. The superconducting transition width, ΔT c = 4 K for all samples except for x = 0.1 wt% where ΔT c = 6 K. The superconducting transition determined by AC susceptibility measurement also showed little change in \(T_{\mathrm {c}\chi ^{\prime }}\) (between 89 and 92 K). However, the peak temperature T p of the imaginary part of the susceptibility χ″, showed a drastic decrease for samples with x > 0.05 wt%. This indicated that the superconducting grains were strongly decoupled for x > 0.05 wt% due to the impurities as observed in the XRD pattern. The intergrain critical current density, J c at T p for the x = 0 sample is J c (82 K) = 17 A cm?2. These results can be useful in the fabrication of semiconductor/YBCO superconductor hybrid systems.  相似文献   

5.
This article details the solid-state synthesis of high-temperature superconducting YBa2Cu3O7?x. Tests were carried out on samples formed at different pressures (200, 400, 600 and 800 MPa) before being annealed under pure oxygen. The X-ray diffraction method showed that, regardless of the forming pressure, the samples contain about 97 wt.% of Y-123 phase. SEM images showed a polycrystalline structure of samples of similar grain size and number of pores (intergranular spaces). The values of critical temperatures (Tc0), determined from magnetoresistance measurements, are about 91.5 K for all samples, and the Tc0 temperatures do not depend on sample-forming pressure. Magnetoresistance measurements have shown that samples formed with higher pressures exhibit smaller changes in Tc0 and superconducting transition width ΔT due to the influence of the HDC magnetic field, than the samples formed with lower pressures. Values of specific resistance determined by the use of van der Pauw method at 300 K is about 2 mΩcm for all samples. The critical temperatures (T cintra) of grains and critical current densities at 77 K were determined from AC magnetic susceptibility measurements, and they are about 91.6 K and 400 A cm?2, respectively.  相似文献   

6.
The phase equilibria involved in the thermal dissociation of RMnO3 (R = Dy, Yb, Lu) were studied in the range 973–1173 K by a static method in a vacuum circulation unit and by x-ray diffraction analysis of quenched solid phases. The RMnO3 manganites were shown to dissociate by the reaction RMnO3 = 1/2R2O3 + MnO + 1/4O2. The temperature dependences of the equilibrium oxygen pressure and Gibbs energy change in this reaction were determined for the three compounds. The experimental data were used to evaluate the standard thermodynamic functions of formation of RMnO3 from R2O3 and Mn2O3: ΔH0(T) = ?88.93 kJ/mol, Δ S0(T) = 46.56 J/(mol K) for DyMnO3; ΔH0(T) = ?130.95 kJ/mol, Δ S0(T) = 86.25 J/(mol K) for YbMnO3; ΔH0(T) = ?142.94 kJ/mol, Δ S0(T) = 102.87 J/(mol K) for LuMnO3.  相似文献   

7.
A method for evaluation of the critical temperature T c and the width of the superconducting transition ΔT c in HTSC single crystals has been developed. By this method, the first derivative of the temperature dependence of the resistivity, \(\frac{\partial \rho (T)}{\partial T}\), is constructed. A technique for synthesis of YBa2Cu3O7?x single crystals with highly reproducible physical-mechanical properties has been described. A standard sample with T c=94 K and ΔT c=0.25 K has been synthesized and certified.  相似文献   

8.
The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( T c = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( T c = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.  相似文献   

9.
We report bulk superconductivity at 2.5 K in LaO0.5F0.5BiSe2 compound through the DC magnetic susceptibility and electrical resistivity measurements. The synthesized LaO0.5F0.5BiSe2 compound is crystallized in tetragonal structure with space group P4/nmm and Reitveld refined lattice parameters are a = 4.15(1) Å and c = 14.02(2) Å. The lower critical field of H c1 = 40 Oe, at temperature 2 K is estimated through the low field magnetization measurements. The LaO0.5F0.5BiSe2 compound showed metallic normal state electrical resistivity with residual resistivity value of 1.35 m Ω cm. The compound is a type-II superconductor, and the estimated H c2(0) value obtained by WHH formula is above 20 kOe for 90 % ρ n criteria. The superconducting transition temperature decreases with applied pressure till around 1.68 GPa and with further higher pressures a high- T c phase emerges with possible onset T c of above 5 K for 2.5 GPa.  相似文献   

10.
In the present report, we investigate various properties of the Nb2PdS5 superconductor. Scanning electron microscopy displayed slabs like laminar growth of Nb2PdS5 while X-ray photoelectron spectroscopy exhibited the hybridisation of sulphur (2p) with both palladium (3d) and niobium (3d). High-field (140 kOe) magneto-transport measurements revealed that superconductivity (\(T_{c}^{\text {onset}} =?7\) K and T cρ=?0 = 6.2 K) of the studied Nb2PdS5 material is quite robust against magnetic field with the upper critical field (H c2) outside the Pauli paramagnetic limit. Thermally activated flux flow (TAFF) of the compound showed that resistivity curves follow Arrhenius behaviour. The activation energy for Nb2PdS5 is found to decrease from 15.15 meV at 10 kOe to 2.35 meV at 140 kOe. Seemingly, the single vortex pinning is dominant in low-field regions, while collective pinning is dominant in high-field region. The temperature dependence of AC susceptibility confirmed the T c at 6 K, further varying amplitude and frequency, showed well-coupled granular nature of superconductivity. The lower critical field (H c1) is extracted from DC magnetisation measurements at various T below T c. It is found that H c1(T) of Nb2PdS5 material seemingly follows the multiband nature of superconductivity.  相似文献   

11.
Interaction of hydrogen with the intermetallic compound Nd2Fe17 has been studied for the first time by calorimetry using a differential heat conduction calorimeter coupled to a Sieverts apparatus. Hydrogen absorption and desorption reactions were run at 200°C, and two types of data were obtained: p–C–T and ΔH–C–T (where p is the equilibrium hydrogen pressure, C = H/Nd2Fe17, ΔH is the reaction enthalpy, and T is the measurement temperature). The p–C–T curves obtained for the hydrogen absorption and desorption processes have no plateau or two-phase region, in contrast to what is characteristic of the formation of a hydride phase. At the same time, the ΔH(C) curves have a few portions where the enthalpy of reaction between hydrogen and the intermetallic compound remains constant: 0 < C < 2.0, with ΔH abs =–85.05 ± 0.65 kJ/mol H 2; 2.0 < C < 2.7, with ΔH abs =–80.64 ± 1.00 kJ/mol H2; and 1.9 < C < 2.7, with ΔH des = 76.48 ± 0.85 kJ/mol H2. The data obtained in this study suggest that positions 9e and 18g in the intermetallic compound are occupied by hydrogen in a particular order.  相似文献   

12.
Magnetization and 57Fe Mössbauer effect spectroscopy (MS) studies of Ba(Fe1?x Ni x )2As2 single crystals (x=0 to 0.054) at temperatures (5 K to 300 K) have been performed. Magnetic measurements show that for BaFe2As2 the magnetic moment decreases below T N=136 K. T N is suppressed monotonically by Ni doping. On the other hand, for higher x values the magnetic moment increases below T N. Unexpectedly for x=0.024 (T N=67 K), the virgin zero-field-cooled (ZFC) curve is higher than that of field-cooled (FC) one below 48 K. The magnetic MS spectra of this sample are composed of a superposition of two subspectra, corresponding to commensurate and incommensurate field distributions. The average magnetic hyperfine field H eff decreases with T and becomes zero at 80 K. For higher x values, the samples become superconducting at T C=15.5 and 19 K for x=0.046 and 0.054, respectively. For both samples below T C, the FC curves are positive (the paramagnetic Meissner effect) up to applied field of H~15 Oe and the susceptibility is inversely proportional to H. The MS spectra below and above T C are almost identical, indicating that the MS parameters are not sensitive enough to detect the superconducting state. The peculiar phenomena observed are attributed to disorder induced by the presence of Ni atoms in the Fe sublattice.  相似文献   

13.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

14.
The substitution of strontium for lead in the material (La1.5Pb0.5?xSr x )CuO z , x = 0–0.15 has been carried out. A stable and reproducible single phased superconducting materials can be obtained inside an evacuated quartz tube. The X-ray diffraction pattern shows that the superconducting phase can be indexed on the basis of an orthorhombic symmetry (Fmmm) for x = 0 and on the basis of tetragonal symmetry (I4/mmm) for x > 0. The transition temperature T c increases as the strontium substitution parameter x increases. We observed the maximal T c around x = 0.15 with 38 K with fairly large Meissner volume fraction of 38% (FC).  相似文献   

15.
The superconducting state in vanadium characterizes with the critical temperature (T c ) equal to 5.3 K. The Coulomb pseudopotential, calculated with the help of the Eliashberg equations, possesses anomalously high value μ ?(3Ωmax) = 0.259 or μ ?(10Ωmax) = 0.368 (Ωmax denotes the maximum phonon frequency). Despite the relatively large electron-phonon coupling constant (λ = 0.91), the quantities such as the order parameter (Δ), the specific heat (C), and the thermodynamic critical field (H c ) determine the values of the dimensionless ratios not deviating much from the predictions of the BCS theory: R Δ = 2Δ(0)/k B T c = 3.68, R C = ΔC(T c ) /C N (T c ) = 1.69, and \(R_{H}=T_{c}C^{N}\left (T_{c}\right )\slash {H^{2}_{c}}\left (0\right )=0.171\). This result is associated with the reduction of the strong-coupling and the retardation effects by the high value of the Coulomb pseudopotential. It has been shown that the results of the Eliashberg formalism can be relatively precisely reproduced with the help of the semi-analytical formulas, if the value of μ ? is determined on the basis of the T c -Allen-Dynes expression (μ A D? = 0.198). The attention should be paid to the fact that in the numerical and in the semi-analytical approach the comparable values of the thermodynamic parameters for the same μ ? have been obtained only in the vicinity of the point μ ? = 0.1.  相似文献   

16.
The existence of two polytypes at room temperatures, C-TlInS2 and 2C-TlInS2, with different monoclinic cell parameters, c and 2c, has been revealed. Significant differences in crystal lattice dynamics of these polytypes have been found. In particular, two phase transitions (PTs) have been detected for the polytype C-TlInS2 as the temperature varies: a second-order PT from paraphase to incommensurate phase at T i = 215 K and a first-order ferroelectric PT accompanied by a quadrupling of the parameter c at T c = 197 K. No PT accompanied by an increase in unit cell parameter c has been found in the polytype 2C-TlInS2, but a global temperature hysteresis characteristic of crystals with an incommensurately modulated structure has been detected at T = 180–230 K.  相似文献   

17.
Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The Cp(T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).  相似文献   

18.
The heat capacity of InVO4 has been determined by differential scanning calorimetry in the temperature range 339–1089 K. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of indium orthovanadate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т). The specific heats of GaVO4 and TlVO4 have been evaluated.  相似文献   

19.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

20.
The stability of a new single-domain therapeutic antibody to the ErbB3 receptor was studied by fluorescence spectroscopy at different concentrations of a denaturing agent and temperatures. The analysis of experimental denaturation curves allowed us to build a complete thermodynamic model of unfolding and to determine all parameters of the transition: ΔG = 8.5 kcal mol–1, T m = 76°C, ΔH m = 107 kcal mol–1, ΔC p = 1.8 kcal K–1 mol–1. The obtained data evidence the high stability of the antibody in a broad range of conditions, which is essential for further structural and functional studies and possible therapeutic application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号