首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on superconducting properties of high-quality single crystals of F-substituted NdOBiS2 using low-temperature magnetization and transport measurements. Using the mixture of CsCl and KCl as the flux, we have synthesized our single crystals. This compound exhibits bulk superconductivity with a transition temperature of about T c~4.6 K. The critical current density J c as a function of temperature has been derived and decreases with the increasing temperature. We construct the phase diagram H c2(T). The zero-temperature value for \(H_{\mathrm {c2}}^{B\parallel c}\) for value for \(T_{c}^{90~\%}\) and \(T_{c}^{0~\%}\) is estimated to be approximately 2.17 and 1.72 T respectively by using Werthamer-Helfand-Hohenberg model.  相似文献   

2.
The scaling behavior of dynamic hysteresis was investigated in Bi3.15Nd0.85Ti3O12 bulk ceramics at a frequency of 1–1000 Hz and an external electric field amplitude of 79–221 kV/cm. The scaling behavior at low amplitude (E 0 ≤ 114 kV/cm) takes the form of \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.7}\) for low frequency (f ≤ 200 Hz) and \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.22}\) for high frequency (f > 200 Hz), where \(\langle A \rangle\) is the area of hysteresis loop and f and E 0 are frequency and amplitude of external electric field, respectively. At high amplitude (E 0 > 114 kV/cm), we obtain \(\langle A \rangle \propto f^{0.011} E_{0}^{1.163}\) at low frequency and \(\langle A \rangle \propto f^{ - 0.015} E_{0}^{0.7}\) at high frequency. At low E 0, the contribution to the scaling relation mainly results from reversible domain switching, while at high E 0 reversible and irreversible domain switching concurrently contribute to the scaling relation.  相似文献   

3.
This investigation is interested in studying the relation between magnetocaloric effect and transport properties i La0.8Ca0.2MnO3 manganite compound. The value of the magnetocaloric effect has been determined from the calculation of magnetization as a function of temperature under different external magnetic fields. This study also provides an alternative method to determine the magnetocaloric properties such as magnetic entropy change and heat capacity change on the basis of M(T, H) measurements. On the other hand, based on magnetic and resistivity measurements, the magnetocaloric properties of this compound were investigated using an equation of the form \({\Delta } S \,=\, - \alpha {\int \limits _{0}^{H}} {\left [ {\frac {\delta Ln\left (\rho \right )}{\delta T}} \right ]}_{H} dH\), which relates magnetic order to transport behavior of the compounds. As an important result, the values of MCE and the results of calculation are in good agreement with the experimental ones, which indicates the strong correlation between the electric and magnetic properties in manganites.  相似文献   

4.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

5.
The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ~ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.  相似文献   

6.
The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil (Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about \(2.14\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\). A transient thermal probe method was applied to measure the thermal conductivity (\(\lambda \)) over a full range of the degree of saturation \((S_{\mathrm{r}})\), at two porosities (n) of 0.44 and 0.50, and at room temperature of about \(25\,^{\circ }\hbox {C}\). The \(\lambda \) data obtained were consistent between tests and showed an increasing trend with increasing \(S_{\mathrm{r}}\) and decreasing n. At full saturation (\(S_{\mathrm{r}}=1\)), a nearly quintuple \(\lambda \) increase was observed with respect to full dryness (\(S_{\mathrm{r}}=0\)). In general, the measured data closely followed the natural trend of \(\lambda \) versus \(S_{\mathrm{r}}\) exhibited by published data at room temperature for other unsaturated soils and sands. The measured \(\lambda \) data had an average root-mean-squared error (RMSE) of \(0.007\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) and \(0.008\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level \((\hbox {RSDM}_{0.95})\) of 2.21 % and 2.72  % for n of 0.50 and 0.44, respectively.  相似文献   

7.
This work is a study of the interface structure effect on the magnetotransport properties in Ni81Fe19/Ti10 W 90 magnetic multilayer. The overall weakness showed by experimental magnetoresistance rate \(\text {MR}_{\exp }\) is probably due to a degradation of the interface quality caused by the apparition of a disordered phase NiFeW at the interface. Thus, we propose in this paper an extension to the Johnson-Camley semi classical model that takes in consideration the evolution of the interface structure, which makes it possible to reproduce quite faithfully the experimental results \(\text {MR}_{\exp } (t_{\text {NiFe}})\) for all ranges of magnetic layer thicknesses, confirming the important role of the interface structure on the electronic transport properties.  相似文献   

8.
The isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), saturation densities (\({\rho _{\rm S}^{\prime}}\) and \(({\rho_{\rm S}^{\prime\prime})}\)), vapor pressures (P S), thermal-pressure coefficients \({\gamma_V=\left({\partial P/\partial T}\right)_V}\), and first temperature derivatives of the vapor pressure γ S = (dP S/dT) of diethyl ether (DEE) on the liquid–gas coexistence curve near the critical point have been measured with a high-temperature and high-pressure nearly constant-volume adiabatic piezo-calorimeter. The measurements of \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) were made in the liquid and vapor one- and two-phase regions along the coexistence curve. The calorimeter was additionally supplied with a calibrated extensometer to accurately and simultaneously measure the PVTC V VT, and thermal-pressure coefficient, γ V , along the saturation curve. The measurements were carried out in the temperature range from 416 K to 466.845 K (the critical temperature) for 17 liquid and vapor densities from 212.6 kg · m?3 to 534.6 kg · m?3. The quasi-static thermo- (reading of PRT, T ? τ plot) and baro-gram (readings of the tensotransducer, P ? τ plot) techniques were used to accurately measure the phase-transition parameters (P S ,ρ S ,T S) and γ V . The total experimental uncertainty of density (ρ S), pressure (P S), temperature (T S), isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), and thermal-pressure coefficient, γ V , were estimated to be 0.02 % to 0.05 %, 0.05 %, 15 mK, 2 % to 3 %, and 0.12 % to 1.5 %, respectively. The measured values of saturated caloric \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) and saturated thermal (P S, ρ S, T S) properties were used to calculate other derived thermodynamic properties C P C SWK T P int, ΔH vap, and \({\left({\partial V/\partial T}\right)_P^{\prime}}\) of DEE near the critical point. The second temperature derivatives of the vapor pressure, (d2 P S/dT 2), and chemical potential, (d2 μ/dT 2), were also calculated directly from the measured one- and two-phase liquid and vapor isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) near the critical point. The derived values of (d2 P S/dT 2) from calorimetric measurements were compared with values calculated from vapor–pressure equations. The measured and derived thermodynamic properties of DEE near the critical point were interpreted in terms of the “complete scaling” theory of critical phenomena. In particular, the effect of a Yang–Yang anomaly of strength R μ on the coexistence-curve diameter behavior near the critical point was studied. Extended scaling-type equations for the measured properties P S (T), ρ S (T), and \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) as a function of temperature were developed.  相似文献   

9.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

10.
\(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\) crystallizes in tetragonal CeOBiS\(_{2}\) structure (S. G. P4/nmm). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\). The \(T_{\mathrm{c}}\) in our sample is 5.3 K, at ambient pressure, which is marginal but definite enhancement over \(T_{\mathrm{c}}\) reported earlier (= 5.1 K). The upper critical field \(H_{\mathrm{c}2}\)(0) is greater than 3 T, which is higher than earlier report on this material. As determined from the MH curve, both \(H_{\mathrm{c}2}\) and \(H_{\mathrm{c}1}\) decrease under external pressure P (0 \(\le P \le \) 1 GPa). We observe a decrease in critical current density and transition temperature on applying pressure in \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\).  相似文献   

11.
The polycrystalline Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1 MxO y , with M = Zr (x = 0.0, 0.02, 0.04), were synthesized by solid-state reaction method and studied by X-ray diffraction analysis (XRD), scanning electron microscopy equipped with energy dispersive of X-ray analysis (SEM/EDX) and resistivity versus temperature measurements. The influence of the Zr addition on the Tc and microstructure properties of the superconducting compounds has been studied. SEM observations show whiskers grains randomly distributed and microstructural change due to the addition of Zr. The ZrO2 was incorporated into the crystalline structure of BSCCO system in all samples. The crystallographic structure remains in a tetragonal form where a= bc. Generally, all samples exhibit semiconductor behaviour above \(T_{\mathrm {c}}^{\text {onset}}\). The onset critical temperature \(T_{\mathrm {c}}^{\text {onset}}\) increases up to 86 with x = 0.02. There is an enhancement in the critical temperature for doped samples as compared with pure Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1O y .Changes in superconducting properties of ZrO2 nanoparticle added Bi-2212 system were discussed.  相似文献   

12.
The phonon spectrum of many superconducting compounds and, especially, high-Tc hydrides, is broad and rather complicated, because of the presence of high-frequency optical modes. In order to analyze an interplay of optical and acoustic phonon branches, it is convenient to introduce two coupling constants, \(\lambda _{\text {opt.}}\) and \(\lambda _{\text {ac.}}\), along with characteristic frequencies. The correlation between the value of Tc and this interplay is demonstrated for the family of tantal hydrides (TaH2/TaH4/TaH6). The problem of the upper limit of Tc is discussed. The phenomenon of room temperature superconductivity can be provided by the electron-phonon interaction and is described by the strong coupling theory.  相似文献   

13.
A LiNbO3 bicrystal that contains a {2\( \bar{1} \) \( \bar{1} \)0} low-angle grain boundary with both of 2° tilt misorientation and a slight twist misorientation was fabricated, and resulting dislocation structure at the boundary was analyzed by using transmission electron microscopy (TEM) and scanning TEM. The observations revealed that two types of dislocations of b = 1/3 <2\( \bar{1} \) \( \bar{1} \)0> and b = <10\( \bar{1} \)0> are formed at the boundary. A 1/3 <2\( \bar{1} \) \( \bar{1} \)0> dislocation, which dissociates into two partial dislocations with a {2\( \bar{1} \) \( \bar{1} \)0} stacking fault in between, compensates only tilt misorientation of the boundary. On the other hand, it was found that a <10\( \bar{1} \)0> dislocation, which dissociates into three equivalent partial dislocations with b = 1/3 <10\( \bar{1} \)0>, has both edge and screw components in total. That is, the <10\( \bar{1} \)0> dislocations are formed to compensate the twist misorientation of the boundary, in addition to the tilt misorientation. It is interesting that the three partial dislocations from a <10\( \bar{1} \)0> dislocation are arranged in a zigzag pattern with left–right asymmetry. This special configuration is suggested to originate from the presence of stable stacking fault structure on the {2\( \bar{1} \) \( \bar{1} \)3} plane in LiNbO3.  相似文献   

14.
The stress-strain curves under tensile deformation in the 〈100〉, 〈110〉, and 〈111〉 directions and under shear deformation in the (001)〈110〉, \((110)\langle \overline {1}10\rangle \), \((111)\langle 1\overline {1}0\rangle \), and \((111)\langle 11\overline {2}\rangle \) slip systems have been systematically calculated by first-principles method to study the ideal strengths of superconducting MgCNi3 and CdCNi3. The ideal strengths in the three tensile directions are found to be reduced in the order of 〈100〉 → 〈110〉 → 〈111〉 and those for the four shear slip systems in the order of \((110)\langle \overline {1}10\rangle \rightarrow (111)\langle 11\overline {2}\rangle \rightarrow (111)\langle 1\overline {1}0\rangle \rightarrow (001)\langle 110\rangle \) for both superconductors. Their lowest ideal tensile strengths are found to be larger than the corresponding highest ideal shear strengths, which could explain why both superconductors have the ductility. The obtained lattice constants and elastic properties coincide well with the the available experimental and theoretical values.  相似文献   

15.
This paper studies the microwave dielectric properties, microstructure, vibration and densification of Li2ZnTi3+xO8+2x (\(- 0.04 \le {\text{x}} \le +0.06\)) ceramics, manufactured via a conventional mixed oxide route. The X-ray diffraction and Raman spectroscopy revealed the unit cell parameter and cation ordering in LZT non-stoichiometry in their vibrational modes. The densification and phase composition were characterized by the EDX and SEM methods. It was found that a slight Ti vacancy can improve the relative density to the maximum value (96.2%). The XRD results showed that the second phase of TiO2 in the Li2ZnTi3.06O8.12 composition is formed. The sintered samples were detected in the microwave frequency range by using the resonance technique. The \({\text{~}}{\tau _f}\) values of the ceramics within Ti excess adjusted to near zero. The Li2ZnTi2.96O7.92 ceramic showed the best relative density, single phase and best microwave dielectric \({\varepsilon _r}~={\text{ }}25.98\), Q?×?f?=?61,000 GHz, \({\tau _f}={\text{ }} - 17.4{\text{ ppm/}}^\circ {\text{C}}\) sintered at 1100 °C for 4 h.  相似文献   

16.
We report the electrical (angular magneto-resistance and Hall), thermal (heat capacity) and spectroscopic (Raman, X-ray photoelectron, angle-resolved photoelectron) characterization of a bulk Bi2Se3 topological insulator, which was grown by self-flux method through solid-state reaction from high-temperature (950°C) melt and slow cooling (2°C/h) of constituent elements. Bi2Se3 exhibited metallic behaviour down to 5 K. Magneto-transport measurements revealed linear up to 400 and 30% magneto-resistance (MR) at 5 K under a 14-T field in perpendicular and parallel field directions, respectively. We noticed that the MR of Bi2Se3 is very sensitive to the angle of the applied field. The MR is maximum when the field is normal to the sample surface, while it is minimum when the field is parallel. The Hall coefficient (R H) is seen nearly invariant with a negative carrier sign down to 5 K albeit having near-periodic oscillations above 100 K. The heat capacity (C p) versus temperature plot is seen without any phase transitions down to 5 K and is well fitted (C p = γ T + β T 3) at low temperature with a calculated Debye temperature (?? D) value of 105.5 K. Clear Raman peaks are seen at 72, 131 and 177 cm?1 corresponding to A\(_{\mathrm {1g}}^{1}\), E\(_{\mathrm {g}}^{2}\) and A\(_{1\mathrm {g}}^{2}\), respectively. Though two distinct asymmetric characteristic peak shapes are seen for Bi 4f7/2 and Bi 4f5/2, the Se 3d region is found to be broad, displaying the overlapping of spin-orbit components of the same. Angle-resolved photoemission spectroscopy (ARPES) data of Bi2Se3 revealed distinctly the bulk conduction bands (BCB), surface state (SS), Dirac point (DP) and bulk valence bands (BVB), and 3D bulk conduction signatures are clearly seen. Summarily, a host of physical properties for the as-grown Bi2Se3 crystal are reported here.  相似文献   

17.
Photoreflectance spectra have been measured on the ternary chalcopyrite semiconductor AgInSe2 at T = 15–300 K. The direct-bandgap energies, E 0A, E 0B, and E 0C, of AgInSe2 show unusual temperature dependence at low temperatures. The resultant temperature coefficients \({\partial E_{0\alpha}/\partial T}\) \(({\alpha=\hbox{A, B, C}})\) are positive at T below ~100 K and negative above ~100 K. These results are successfully explained by taking into account the negative lattice thermal expansion at low temperatures. The spin–orbit and crystal-field parameters Δso and Δcf are also found to show small temperature variations.  相似文献   

18.
The superconducting phase transition at \(T_\mathrm{c} = 2.3\) K was observed for the electrical resistivity \(\rho ({T})\) and magnetic susceptibility \(\chi (T)\) measurements in the ternary compound La\(_{5}\hbox {Ni}_{2}\hbox {Si}_{3}\) that crystallizes in the hexagonal-type structure. Although a single-phase character with the nominal stoichiometry of the synthesized sample was confirmed, a small trace of the La–Ni phase was found, being probably responsible for the superconducting behaviour in the investigated compound. The magnetization loop recorded at \({T} = 0.5\) K resembles a star-like shape which indicates that the density of the critical current can be strongly suppressed by a magnetic field. The low-\(T _{\rho }(T)\) and specific heat \({C}_\mathrm{p}({T})\) data in the normal state reveal simple metallic behaviour. No clear evidence of a phase transition to any long- or short-range order was found for \(C_\mathrm{p}(T)\) measurements in the T-range of 0.4–300 K.  相似文献   

19.
Au/C20H12/n-Si SBD was fabricated and its characteristic parameters such as reverse-saturation current (Io), ideality factor (n), zero-bias barrier height (Φbo), series and shunt resistances (Rs, Rsh) were found as 1.974 × 10?7 A, 6.434, 0.351 eV, 30.22 Ω and 18.96 kΩ at 160 K and 1.061 × 10?6 A, 2.34, 0.836 eV, 5.82 Ω and 24.52 kΩ at 380 K, respectively. While the value of n decreases with increasing temperature, Φbo increases. The change in Φbo with temperature is not agreement with negative temperature coefficient of forbidden band-gap of semiconductor (Si). Thus, Φ bo versus n, Φ bo and (n?1 ? 1) versus q/2kT plots were drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and all of them have a straight line. The mean value of BH (\( \overline{\varPhi }_{bo} \)) was found as 0.983 eV from the intercept of Φ bo versus n plot (for n = 1). Also, the value of \( \overline{\varPhi }_{bo} \) and standard deviation (σs) were found as 1.123 eV and 0.151 V from the slope and intercept of Φbo versus q/2kT plot. By using the modified Richardson plot, the \( \overline{\varPhi }_{bo} \) and Richardson constant (A*) values were obtained as 1.116 eV and 113.44 A cm?2 K?2 from the slope and intercept of this plot, respectively. It is clear that this value of A* (=113.44 A cm?2 K?2) is very close to their theoretical value of 112 A cm?2 K?2 for n-Si. In addition, the energy density distribution profile of surface states (Dit) was obtained from the forward bias I–V data by taking into account the bias dependent of the effective barrier height (Φ e ) and ideality factor n(V) for four different temperatures (160, 200, 300, and 380 K). In conclusion, the I–V–T measurements of the Au/C20H12/n-Si SBD in the whole temperature range can be successfully explained on the basis of thermionic emission (TE) theory with GD of the BHs.  相似文献   

20.
\(\hbox {Pr}^{3+}\) doped molybdenum lead-borate glasses with the chemical composition 75PbO?[25–(x \(+\) y)\(\hbox {B}_{2}\hbox {O}_{3}]\)\(y\hbox {MoO}_{3}\)\(x\hbox {Pr}_{2}\hbox {O}_{3}\) (where \(x = 0.5\) and 1.0 mol% and \(y = 0\) and 5 mol%) were prepared by conventional melt-quenching technique. Thermal, optical and structural analyses are carried out using DSC, UV and FTIR spectra. The physical parameters, like glass transition \((T_{\mathrm{g}})\), stability factor \((\Delta T)\), optical energy band gap \((E_{\mathrm{gopt}})\), of these glasses have been determined as a function of dopant concentration. The \({T}_{\mathrm{g}}\) and optical energy gaps of these glasses were found to be in the range of 290–350\({^{\circ }}\hbox {C}\) and 2.45–2.7 eV, respectively. Stability of the glass doped with \(\hbox {Pr}^{3+}\) is found to be moderate (\(\sim \)40). The results are discussed using the structural model of Mo–lead-borate glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号