首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用扫描电镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等测试方法表征了两种国产上浆/去浆T800级炭纤维的表面特性,并通过单丝断裂实验测试了单丝复合体系微观界面剪切强度(IFSS),在此基础上研究了炭纤维表面特性对单丝复合体系微观界面性能及其耐湿热性能的影响。结果表明:去浆后炭纤维表面含氧活性官能团含量降低,粗糙度增加,与基体树脂的界面结合强度增大;湿热环境对复合材料的微观界面性能影响显著,尤其是破坏了纤维/基体间的化学键合作用,但去湿后部分界面性能可恢复。  相似文献   

2.
选用国产的连续炭纤维长丝与ABS树脂分别采用常规共混法、薄膜层叠法、溶液浸渍法三种工艺制备了连续炭纤维增强ABS热塑性树脂复合材料。通过对复合材料的力学性能、热性能、动态黏弹性及微观形貌的研究,分析了ABS热塑性树脂基复合材料的制备工艺对界面性能的影响。结果表明:不同制备工艺中复合材料随炭纤维含量的增加其各项力学性能都不断提高,当炭纤维含量为60%(质量分数)时力学性能达到最高,但不同制备工艺导致复合材料界面性能差异较大,影响其力学性能的增幅。溶液浸渍法制备的复合材料树脂对炭纤维的浸润性良好,其最大拉伸强度和层间剪切强度分别达到1100MPa和71MPa,较常规共混法复合材料性能提高约80%;其损耗角正切仅为常规共混法复合材料的40%;界面性能提高使复合材料的耐热性能提高。  相似文献   

3.
Z-pin增强陶瓷基复合材料拉伸和层间剪切性能   总被引:1,自引:1,他引:0       下载免费PDF全文
《复合材料学报》2007,24(1):86-90
研究了Z-pin横向增强平纹编织陶瓷基复合材料的拉伸和层间剪切性能。炭纤维平纹编织物和炭纤维Z-pin制备的预成型体, 通过化学气相渗透(CVI)工艺制成Z-pin增强平纹编织陶瓷基复合材料。通过单轴拉伸试验及加-卸载试验研究材料拉伸力学性能参数及破坏规律。采用双切口压缩试验测试材料的层间剪切强度。结果表明, Z-pin增强平纹编织陶瓷基复合材料拉伸应力-应变曲线具有非线性特性; Z-pin嵌入降低了平纹编织陶瓷基复合材料的拉伸强度, 显著提高了陶瓷基复合材料层间剪切强度, 使原来单纯层间基体与织物表面的脱离转变为Z-pin的剪切破坏和层间基体与织物的脱离双重破坏机理。  相似文献   

4.
采用在炭纤维表面接枝含有不同链长的偶联剂的方法, 研究了链长对炭纤维/聚芳基乙炔复合材料界面性能的影响。纤维和树脂的浸润性通过纤维表面能的测定以及纤维表面能和浸润性的讨论进行了评价。通过复合材料界面剪切强度测试以及断口形貌分析对炭纤维/聚芳基乙炔复合材料的界面性能进行了研究。结果表明, 随着炭纤维表面链长的增长, 炭纤维/聚芳基乙炔复合材料的界面粘结性能随之提高。界面粘结性能的提高主要归因于接枝于炭纤维表面的偶联剂的分子链和聚芳基乙炔树脂分子链发生了物理缠结作用, 并且这种缠结作用随着纤维表面分子链的长度的增加而增强。   相似文献   

5.
在基体和成型工艺一定的条件下,炭纤维(CF)的表面状态决定了复合材料的界面性质通过空气冷等离子体处理、表面接技NA-酸酐和表面徐没涂层的方法对炭纤维进行表面改性:采用界面微脱粘测试技术表征不同表面处理方法对炭纤维/聚酰亚胶树脂复合材料界面剪切强度的影响;并应用TEM和图像处理技术对其界面进行直观表正计算出不同界面层厚度  相似文献   

6.
在基体和成型工艺一定的条件下,炭纤维(CF)的表面状态决定了复合材料的界面性质通过空气冷等离子体处理、表面接技NA-酸酐和表面徐没涂层的方法对炭纤维进行表面改性:采用界面微脱粘测试技术表征不同表面处理方法对炭纤维/聚酰亚胶树脂复合材料界面剪切强度的影响;并应用TEM和图像处理技术对其界面进行直观表正计算出不同界面层厚度  相似文献   

7.
连续纤维增强PPESK树脂基复合材料的界面性能   总被引:6,自引:0,他引:6  
陈平  陆春  于祺  孙明 《材料研究学报》2005,19(2):159-164
用SEM观察了复合材料的微观断面结构,用横向拉伸强度和层间剪切强度表征玻璃纤维(GF)、T700碳纤维(CF)、芳纶纤维(F-12)增强PPESK树脂基复合材料的界面性能,研究了界面性能对三种复合材料耐湿热性能的影响.结果表明,T700/PPESK和F-12/PPESK复合材料的界面粘接性能均优于GF/PPESK复合体系.三种纤维复合材料的破坏机理不同:玻璃纤维发生纤维与树脂的界面脱粘破坏,碳纤维复合材料在破坏时,树脂与纤维并没有完全脱粘,破坏发生在树脂内;而芳纶纤维复合材料的破坏总伴随着纤维本身横向的撕裂破坏.三种复合材料体系均具有较低的吸湿率和良好的耐湿热性能,T700/PPESK复合材料在湿热条件下的性能保持率最高.  相似文献   

8.
将连续炭纤维束用自制的空气梳分散成单丝状长带后, 通过采用循环伏安法的电化学方法将单体苯酚在炭纤维表面聚合成膜, 对炭纤维进行表面修饰, 以提高复合材料中炭纤维与树脂基体的界面粘结性能。红外光谱分析表明, 苯酚电聚合膜能够增加炭纤维表面的羟基、 醚键等活性官能团, 从而提高炭纤维与环氧树脂基体的界面粘结强度。与未进行表面修饰的炭纤维增强环氧树脂复合材料相比, 以聚苯酚膜修饰的炭纤维单丝带增强的环氧树脂基复合材料横向拉伸强度最大提高了90%, 纵向拉伸强度最大提高了45%, 层间剪切强度最大提高了110%。实验也表明, 将炭纤维束分散成炭纤维单丝带后能够更有效地增强复合材料的各项力学性能。   相似文献   

9.
通过单纤维拔出实验和单轴拉伸实验, 测定了形状记忆合金(SMA)增强树脂基复合材料的界面脱粘剪切强度和单向随机分布SMA短纤维增强复合材料的拉伸强度。根据蒙特卡罗法和边界条件控制方程, 编写了适于软件调用的单向随机分布短纤维增强复合材料的APDL语言生成程序, 建立数值模拟模型。基于指数型内聚力模型, 对SMA纤维与环氧树脂基体界面分离(即界面脱粘)过程进行了有限元模拟。结果表明: 相同纤维体积分数下, 随着纤维长细比的减小, 复合材料整体弹性模量逐渐降低; 温度驱使SMA纤维弹性模量发生变化, 可以有效提高复合材料整体弹性模量。  相似文献   

10.
为了改善Kevlar缝线缝合复合材料的耐湿热性能, 采用化学接枝烯丙基的方法对Kevlar缝合线进行表面改性处理。通过力学测试、 扫描电子显微镜(SEM)、 光电子能谱分析(XPS)对表面改性的纤维进行表征。实验结果表明, 化学处理的Kevlar缝线表面变得粗糙, 缝线表面氧元素的含量提高23%, 在合适的处理条件下, 缝线的拉伸强度降低很小。同时通过测试干、 湿态下炭纤维/双马来酰亚胺树脂缝合复合材料层压板的层间剪切强度, 研究了化学表面处理的Kevlar缝线对缝合炭纤维/双马来酰亚胺树脂复合材料界面性能的影响。测试结果显示, 表面处理后Kevlar缝线缝合的复合材料的吸湿率降低约52%, 湿态层间剪切强度保持率提高15%。   相似文献   

11.
碳纤维增强聚合物基复合材料(CFRP)因其耐腐蚀、轻质高强等特点被广泛应用于海洋环境,进而长期遭受湿热环境的考验。为了解湿热环境和极端温度对碳纤维增强乙烯基树脂复合材料的影响,测试了湿热老化前后和不同温度下CFRP的压缩性能、面内剪切性能和层间剪切强度变化。FTIR和SEM结果表明:纯树脂试样在湿热环境中发生了水解,使试样表面的微裂纹和孔隙不断扩展并向试样内部渗透;碳纤维的埋入抑制了水的扩散和水解,因而CFRP的吸湿曲线与Fickian模型高度吻合;纯树脂由于水解反应影响了吸湿通道使吸湿曲线偏离Fickian模型。力学性能表明:湿热老化90天后压缩强度和层间剪切强度分别降低7.6%、12.3%;试样在高温(70℃)下的压缩强度、面内剪切强度、层间剪切强度分别急剧降低36.2%、26.9%、37.4%,且高温对试样力学性能的影响具有部分可逆性。  相似文献   

12.
对国产炭纤维与T300炭纤维复合材料层合板在常温干态、常温湿态、高温干态与高温湿态四种环境条件下进行了短梁剪切实验.采用宏观和微观相结合的方法,对其剪切性能、失效模式与损伤机理进行了对比研究.结果表明:界面性能是影响纤维树脂基复合材料剪切性能与失效模式最为重要的因素,而国产炭纤维复合材料在界面性能的控制上还有待改进.因...  相似文献   

13.
纤维与基体间的界面性能是决定纤维增强树脂基复合材料力学性能的关键因素。采用单纤维断裂实验方法研究二氧化硅纳米颗粒对炭纤维/环氧树脂复合材料界面的增强作用。实验结果表明,涂覆在炭纤维表面和均匀分散在环氧树脂基体中的二氧化硅纳米颗粒含量分别为4.9g/m2和25%(质量分数)时,复合材料界面性能均得到改善,界面抗剪强度相比纯树脂体系分别提高了10.0%和15.0%。通过对纤维断点处双折射光斑和样品断面形貌等信息分析,可知纳米颗粒均匀分散并镶嵌到炭纤维表面沟槽中形成的锁扣结构是界面性能提高的重要原因。  相似文献   

14.
通过对包覆不同上浆剂的碳纤维增强双马树脂基复合材料在不同温度下的层间剪切强度、弯曲性能和三点弯曲试样破坏模式进行研究,探讨了上浆剂对碳纤维增强双马树脂基复合材料力学性能的影响。研究表明不同的国产上浆剂对CCF300/QY8911复合材料在高温环境时的层间剪切强度和弯曲强度有影响;室温下不同上浆剂的CCF300/QY8911复合材料的力学性能与T300/QY8911复合材料的相当,而高温下其力学性能的保持率低于T300/QY8911复合材料的。  相似文献   

15.
高性能纤维增强树脂基复合材料具有卓越的结构整体性及抗分层等特性,在诸多工业领域中具有广泛适用性。在其储藏及使用时,制件强度会不可避免地因湿热老化造成降解和退化。探讨和揭示高性能纤维增强树脂基复合材料在不同湿热老化环境下的力学响应,对其结构件的耐久性、安全服役性能和寿命预估具有至关重要的意义。综述了国内外高性能纤维增强树脂基复合材料湿热老化方面的研究进展,介绍了其吸湿机理以及在湿热环境下的老化机理。梳理了湿热老化环境对于高性能纤维增强树脂基复合材料力学性能的影响,寿命预测模型等。最后指出了高性能纤维增强树脂基复合材料老化研究存在的问题、面临的挑战,对未来研究发展方向提出了展望。  相似文献   

16.
碳纤维增强树脂复合材料(CFRP)@玻璃纤维增强树脂复合材料(GFRP)混杂复合材料杆体发挥碳纤维的高力学、疲劳性能与玻璃纤维的低成本、高变形能力等优势,在桥梁与海洋工程中具有巨大应用潜力,如跨海大桥斜拉索。针对CFRP@GFRP混杂复合材料杆体在服役环境下长期性能演化,本文采用加速试验方法研究蒸馏水环境下CFRP@GFRP混杂复合材料杆体的水吸收及界面剪切性能长期演化规律。研究结果表明:混杂复合材料杆体皮、芯层及杆体吸水行为符合Fick定律,GFRP皮层扩散系数最大,CFRP芯层次之,混杂复合材料杆体由于在皮/芯界面层形成吸水屏障而扩散系数最小。浸泡在蒸馏水环境下芯层、皮/芯界面及皮层界面剪切强度下降,这是由于浸泡过程中水分子通过氢键形式与树脂基体结合形成结合水,导致树脂基体发生水解和塑化及纤维/树脂界面脱黏。基于Arrhenius加速理论建立了混杂复合材料杆体在三座典型桥梁服役环境下的界面剪切强度预测模型。   相似文献   

17.
碳纤维/树脂复合材料广泛应用于民用航空器结构中,在服役期间会受到复杂环境(湿热、腐蚀、复杂应力和电热作用等)的作用,低强度电流对碳纤维/树脂复合材料的影响受到的关注较少。以碳纤维/树脂复合材料为研究对象,根据碳纤维的温敏效应和通电时的电阻变化规律,计算出碳纤维单丝/环氧树脂复合试样的界面温度范围,之后采用拉曼光谱测试和单丝断裂实验研究了低强度电流对单丝复合体系界面应力和界面剪切强度的影响。结果表明:随着电流强度的提高,单丝复合体系的界面温度随之升高,电流为8 mA时,界面温度高达约200℃。随着电流强度的增大,单丝复合体系的界面压缩应力表现为先增大后减小的趋势,电流高于7 mA后,界面处树脂出现烧蚀降解破坏;单丝断裂实验结果表明随着电流强度增大,单丝复合体系的界面剪切强度呈现先升后降的趋势,在6 mA时界面剪切强度达到最大值62.39 MPa,而8 mA时界面剪切强度仅为34.95 MPa。   相似文献   

18.
采用聚酰胺-胺(PAMAM)树状分子化学修饰方法制备碳纳米管接枝炭纤维(CF-PAMAM-CNTs)新型增强体。利用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对接枝前后CF表面官能团和表面形貌进行表征;利用接触角测量、单丝拉伸方法研究了接枝前后纤维单丝的润湿性能及拉伸强度,并通过微脱黏法分析了其复合材料的界面剪切强度,同时探索了CNTs的最佳接枝量。结果表明,当CNTs接枝量为15%时,CF表面粗糙度提高了180%,表面能提高了300%,拉伸强度提高了22%,复合材料的界面剪切强度提高了178%,这表明CNTs接枝有利于改善CF复合材料的界面性能。  相似文献   

19.
对比研究了环氧5228A树脂及碳纤维/环氧5228A树脂复合材料层合板在3种湿热环境(水煮、70℃水浸,70℃85%相对湿度)下的湿热性能,考察了湿热条件对复合材料层间剪切性能的影响规律,并从吸湿特性、物理化学特性、树脂力学性能、湿应力等方面分析了不同湿热环境下复合材料性能衰减的机制。研究表明,碳纤维/高温固化环氧树脂复合材料层间剪切性能主要是由吸湿率决定,相同吸湿率不同湿热条件下性能的下降幅度基本相同;3种湿热条件下该树脂及其复合材料未发生化学反应、微裂纹等不可逆变化,复合材料层合板湿热老化机制主要是吸入水分后基体增塑和树脂、纤维湿应变不一致导致的湿应力对复合材料性能的负面作用。  相似文献   

20.
采用酚醛树脂作为炭纤维表面处理剂, 可以显著提高多种炭纤维和环氧树脂界面强度。通过XPS、AFM、SEM和层间剪切强度等方法, 研究了不同浓度的酚醛树脂表面处理剂对炭纤维增强环氧树脂复合材料层间剪切强度、炭纤维表面元素和化学键组成的影响, 以及炭纤维增强环氧树脂复合材料断面微观形貌的变化。XPS和AFM分析结果表明酚醛树脂和炭纤维表面发生了化学反应, 而且酚醛树脂处理剂浓度越高, 和炭纤维表面发生反应的基团也越多, 表面越光滑平整, SEM和层间剪切强度研究表明酚醛树脂处理后的复合材料界面粘结性能得到很大的改善, 而且界面粘结性能强烈依靠处理剂浓度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号