首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
赵龙  宋平新  张迎九  杨涛 《材料导报》2018,32(11):1842-1851
随着电子行业的不断发展,第二代热沉材料如钨/铜封装材料、钼/铜封装材料、碳化硅/铝封装材料等已不能满足该领域日益增长的需求。金刚石的热导率为2 300 W/(m·K),是已知热导率最高的物质;铜的热导率为401 W/(m·K),在众多金属中仅次于Ag。金刚石/铜复合材料具有诸多优点:(1)热导率高、强度大;(2)热膨胀系数能够通过改变金刚石与铜的体积分数加以调控,以实现与硅、锗等半导体材料的匹配;(3)具有比金刚石/银复合材料更低的成本以及比金刚石/铝、钨/铜、钼/铜等材料更高的热导率。因此,金刚石/铜复合材料是一种理想的电子封装候选材料。金刚石/铜复合材料的制备技术多种多样,其中粉末冶金、放电等离子体烧结、液相渗透是最适合该复合材料特性也是研究最广泛的技术。液相渗透法又分为无压熔渗法和压力辅助熔渗法,与粉末冶金法和放电等离子体烧结法相比,该法成本低、操作性强,成为近年研究的重点方向。目前,国际上已制备出热导率高达900 W/(m·K)的金刚石/铜复合材料。另一方面,金刚石与铜界面润湿度较差,导致复合材料致密度不高且热导率不易提升。解决金刚石与铜界面润湿度较差的问题成为制备金刚石/铜复合材料的关键,也促使国内外研究者不断尝试在制备工艺环节引入改进措施。目前已探索出两种较为可行的方法:(1)在复合材料制备过程中添加少量B、Cr等活性元素,使这些活性元素与铜形成合金;(2)在制备金刚石/铜复合材料之前,采用化学镀、扩散烧结、盐浴、磁控溅射等手段预先在金刚石表面包覆一层均匀的碳化物。本文总结了金刚石/铜复合材料的国内外最新研究进展及主流制备技术,论述了影响复合材料的热膨胀系数及热导率的主要因素。文章还介绍了改善金刚石与铜的界面润湿度的方法,最后对金刚石/铜复合材料的发展进行了展望。  相似文献   

2.
采用粉末冶金法在高温热压炉中制备金刚石/铜复合材料,研究了钛镀层、烧结温度、金刚石颗粒体积分数对金刚石/铜复合材料热导率的影响。结果表明:钛镀层能改善金刚石/铜复合材料的界面浸润性,降低孔隙率,提高热导率。烧结温度低于980℃时,烧结驱动力不足,致使金刚石/铜复合材料的致密度下降,热导率降低;烧结温度高于980℃时,由...  相似文献   

3.
刘永正 《材料导报》2013,27(4):8-11
采用无压浸渗工艺制备出低成本金刚石/铝复合材料,并对复合材料的显微组织、界面及导热性能进行了研究。实验结果表明,采用无压浸渗工艺制备的金刚石/铝复合材料,组织致密,颗粒分布均匀。金刚石/铝复合材料的热导率随着金刚石含量的增加而增加,热导率最高可达298W/(m·K)。  相似文献   

4.
金刚石表面镀钨对铜/金刚石复合材料热导率的影响   总被引:1,自引:0,他引:1  
利用粉末覆盖烧结法成功在金刚石表面镀覆W,并采用气体压力熔渗法制备Cu/diamond(W)复合材料。研究了不同镀覆温度对镀层微观结构以及复合材料热导率的影响。结果表明,金刚石表面镀钨有效的改善了界面结合,提高了复合材料热导率。镀层厚度随镀覆温度的提高而明显增加,复合材料热导率先增高再降低。当镀覆工艺为1 050℃保温15 min时,镀层厚度为2 000nm,复合材料热导率最高可达到670 W/mK。  相似文献   

5.
通过对金刚石进行两次施镀,首先采用磁控溅射的方法在金刚石表面镀Cr,然后将镀Cr金刚石放入滚筒内进行铜元素滚镀加厚;镀铜后的金刚石与铜的质量比可达到1∶1~1∶2,铜镀层的厚度可达3~20μm。将镀铜金刚石直接放入模具中进行放电等离子(SPS)烧结,得到金刚石-铜复合材料,经测定,该复合材料的热导率可达480W/(m.K)。该工艺能很好地解决金刚石与铜因为密度相差大而混合不均匀问题,极大地提高了材料的热导率。  相似文献   

6.
采用压力融渗的方法制备了高金刚石体积分数的Diamond/ Cu-Cr复合材料.研究了金刚石粒径对复合材料热导率的影响,并依据理论模型计算了界面热阻值.实验结果显示,金刚石颗粒平均粒径分别为40μm,100μm,200μm的Diamond/Cu-Cr复合材料的热导率依次增高,与理论模型计算结果一致.其中,颗粒粒径为200μm的Diamond/Cu-Cr复合材料的热导率达到736.15W/mK.当金刚石的颗粒粒径增大时,其比表面积降低,由于金刚石与基体合金接触的表面热阻高,减少金刚石表面积有助于提高复合材料的热导率.但是,当金刚石的颗粒粒径增大到一定程度时,复合材料二次加工的难度增大,表面质量降低,对工业应用造成困难.  相似文献   

7.
张晓宇  许旻  曹生珠 《材料导报》2018,32(3):443-452
界面结合良好的金刚石/铜复合材料具有优异的热物理性能。通过各种手段修饰金刚石-铜界面能够充分发挥金刚石/铜复合材料的高导热潜力。综述了制备金刚石/铜复合材料时主要的两类界面修饰方法:金刚石表面预镀碳化物形成元素和对铜基体预合金化,并对这两类修饰手段的制备工艺和导热机制进行了简单评述。探讨了金刚石/铜复合材料制备及界面修饰领域目前存在的问题及发展趋势。  相似文献   

8.
为研究高压熔渗金刚石/铜复合材料导热率在低温区的变化规律,采用高压熔渗(HRF)的方法分别制备了不同粒度(100 μm,250 μm,400 μm)的金刚石/铜复合材料,利用扫描量热法分析评价了高压熔渗法制备的不同粒度金刚石/铜复合材料的低温导热特性,采用扫描电子显微镜(SEM)分析其显微组织。研究结果表明:由于高压熔渗制备的金刚石/铜复合材料中的部分金刚石发生聚晶反应,导致金刚石颗粒间晶界传热的热阻远小于界面传热热阻;高压熔渗条件下,金刚石颗粒内部变形破碎导致缺陷增多,且100~150 K低温下以声子为主要热载子的传热对裂纹和间隙等缺陷敏感,导致在较低温区内金刚石/铜复合材料的导热率低于普通压力熔渗(PF)所制备的金刚石/铜复合材料的导热率。  相似文献   

9.
金刚石/铜复合材料具有高热导率、高强度、热膨胀系数可调的优点,是极具发展潜力的新一代电子封装材料。针对复合材料两相界面结合较差的问题,目前主要采用添加活性元素在界面处生成碳化物层的方法来改善。论述了活性元素添加的两种手段,即基体合金化和金刚石表面金属化的研究进展,并归纳了金刚石/铜复合材料导热模型的发展情况,最后提出了金刚石/铜复合材料在界面研究中面临的挑战和其未来努力的方向。  相似文献   

10.
吴建华  张海龙  张洋  李建伟  王西涛 《功能材料》2012,43(17):2295-2298,2303
通过盐浴镀方法实现金刚石表面镀Ti,并采用模压铸造方法制备镀Ti金刚石/Al复合材料。研究镀层对复合材料微观结构和热性能的影响。结果表明金刚石表面镀Ti改善了复合材料的界面结合,降低界面热阻,从而提高了复合材料的热性能,包括降低热膨胀系数,提高复合材料的热导率。采用850℃盐浴镀Ti,镀覆时间180min得到的镀Ti金刚石/Al复合材料热导率高达488W/(m.K),在温度范围50~300℃之间,其平均热膨胀系数为9×10-6/K。  相似文献   

11.
An analytical model for the thermal conductivity of Cu/diamond composites with connected particles is presented by replacement of a cluster of connected particles with an equivalent polycrystal subsequently using a multiple effective medium approach. By applying this model to the measured thermal conductivity of Cu/diamond composites prepared by high pressure high temperature sintering technique reported in the literature, we show that it quite well describes the observed thermal conductivity enhancement induced by the connected particles. We estimate the value of connected particle loading in real composites and show that large particles are easier to form the bonding contact than small particles. The present work also demonstrates that the sensitivity of thermal conductivity contribution from the connected particles strongly depends on the particle size, and their pronounced thermal conductivity enhancement should lie within the certain particle size range.  相似文献   

12.
Copper/diamond (Cu/D) composites are known for their applications in thermal management systems. This paper investigates the effect of interfacial thermal resistance (TR) upon the effective thermal conductivity of Cu/D composites through experimental and numerical means. The composite samples were made using uncoated, Cu-coated, and Cr-coated diamond particles. The transient plane source method was used to measure the thermal conductivity of the composite samples, while the micrographs of the specimens were used to develop the finite element models. Together with the experimental and numerical results, the interfacial TR was identified in each sample. Although Hasselman–Johnson model calculated the conductivity values with significant error, the trend shown by experimental results is still followed. The finite element model, however, led to an error of less than 1%. The numerical analysis showed that the TR depends not only upon the diamond volume fraction but also upon the coating material. Finally, it has been demonstrated that numerical simulation may be employed to reveal the appropriate combinations of diamond fraction and the coating material in order to attain the desired level of effective thermal conductivity.  相似文献   

13.
分别采用在Cu基体添加0. 1 wt%的Ti 元素形成Cu2Ti合金和在Diamond 颗粒表面镀钛(DiamondTi) 的方法, 制备了含Diamond 体积分数为60 %的Diamond/Cu2Ti 复合材料和DiamondTi/Cu 复合材料。对比分析了Ti 元素对复合材料微观组织、界面结合及性能的影响规律。结果表明: 添加0. 1 wt%Ti 元素能改善Diamond与Cu 的界面结合, 在界面处观察到明显的碳化物反应层; 且以Cu2Ti合金的方式添加Ti 元素改善界面的效果优于在Diamond 颗粒表面镀Ti 的方式。所制备的Diamond/Cu2Ti 复合材料的热导率为621 W(m·K) - 1, 而DiamondTi/Cu复合材料的热导率仅为403. 5 W(m·K) -1, 但均高于未添加Ti 制备的Diamond/Cu 复合材料。   相似文献   

14.
Diamond-Cu composites from the direct combination of diamond and Cu show low thermal conductivities due to weak interface and high thermal resistance as a result of chemical incompatibility. In this paper, a new method is proposed to strengthen interfacial binding between diamond and Cu by coating strong carbide-forming elements, e.g., Ti or Cr on the surface of the diamond through vacuum micro-deposition. Interfacial thermal resistance of diamond-Cu composites is greatly decreased when diamond particles are coated by a Cr or Ti layer of a certain thickness before combining with Cu. Thermal conductivity is also increased several times. Cr coating can reduce more effectively interface thermal resistance between diamond and Cu than Ti coating. Moreover, it has a smaller negative impact on the thermal conductivity of the Cu matrix, resulting in higher thermal conductivity of Cr-coated diamond-Cu composites. Through the vacuum micro-deposition technology, Cr on the diamond particle surface is present in the form Cr7C3 near diamond and a pure Cr outer layer at 2:1. The optimum thickness is within 0.6-0.9 μm; at this depth, the thermal conductivities of 70 vol% diamond-Cu composites can be increased four times and reach as high as 657 W/m K. In this work, an original theoretical model is proposed to estimate the thermal conductivities of composite materials with an interlayer of a certain thickness. The predicted values from this model are in good agreement with the experimental values.  相似文献   

15.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

16.
Copper matrix composites reinforced with about 90 vol.% of diamond particles, with the addition of zirconium to copper matrix, were prepared by a high temperature–high pressure method. The Zr content was varied from 0 to 2.0 wt.% to investigate the effect on interfacial microstructure and thermal conductivity of the Cu–Zr/diamond composites. The highest thermal conductivity of 677 W m−1 K−1 was achieved for the composite with 1.0 wt.% Zr addition, which is 64% higher than that of the composite without Zr addition. This improvement is attributed to the formation of ZrC at the interface between copper and diamond. The variation of thermal conductivity of the composites was correlated to the evolution of interfacial microstructure with increasing Zr content.  相似文献   

17.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1.  相似文献   

18.
采用气体压力浸渗法制备了金刚石/Al、金刚石/AlSi7和金刚石/AlSi9复合材料,对比研究了其暴露在空气中的性能衰退行为。研究表明,界面反应产物Al4C3会潮解生成Al(OH)3,增大界面热阻,导致金刚石/Al复合材料性能衰退。Al基体中添加Si元素可以显著降低其性能衰退速率,其机制为:金刚石中C元素在Al液中溶解度的降低和Si在金刚石颗粒表面的优先析出,抑制了Al4C3的生成量;此外,金刚石/AlSi复合材料致密度的提高,对Al4C3与水汽的接触起到阻碍作用。讨论了抑制金刚石/Al复合材料性能衰退的几种可行方法,有望进一步提高其在潮湿环境中的使用寿命。   相似文献   

19.
Molybdenum carbide (Mo2C) coatings on diamond particles were proposed to improve the interfacial bonding between diamond particles and copper. The Mo2C-coated diamond particles were prepared by molten salts method and the copper–diamond composites were obtained by vacuum pressure infiltration of Mo2C-coated diamond particles with pure copper. The structures of the coatings and composites were investigated using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the Mo2C coatings effectively improved the wettability between diamond particles and copper matrix, and Mo2C intermediate layers were proved to decrease the interfacial thermal resistance of composites. The thermal conductivity of the composite reached 608 Wm?1 K?1 with 65 vol.% Mo2C-coated diamond, which was much higher than that with uncoated diamond. The greatly enhanced thermal conductivity is ascribed to the 1-μm-thick Mo2C coatings. Mo2C coatings on diamond particles are proved to be an effective way to enhance the thermal conductivities of copper–diamond composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号