首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The proper folding and assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum (ER) is an intricate process involving a number of components. Nascent heavy chains of MHC class I molecules, translocated into the ER membrane, are rapidly glycosylated and bind the transmembrane chaperone calnexin. In humans, after dissociation from calnexin, fully oxidized MHC class I heavy chains associate with beta 2-microglobulin (beta 2m) and the soluble chaperone calreticulin. This complex interacts with another transmembrane protein, tapasin, which is believed to assist in MHC class I folding as well as in mediating the interaction between assembling MHC class I molecules and the transporter associated with antigen processing (TAP). The TAP heterodimer (TAP1-TAP2) introduces the final component of the MHC class I molecule by translocating peptides, predominately generated by the proteasome, from the cytosol into the ER where they can bind dimers of beta 2M and the MHC class I heavy chain. Recently, the thiol oxidoreductase ERp57--also known as GRP58, ERp61, ER60, Q2, HIP-70, and CPT and first misidentified as phospholipase C-alpha--has been shown to bind in conjunction with calnexin or calreticulin to a number of newly synthesized ER glycoproteins when their N-linked glycans are trimmed by glucosidases I and II. It was speculated that ERp57 is a generic component of the glycan-dependent ER quality control system. Here, we show that ERp57 is a component of the MHC class I peptide-loading complex. ERp57 might influence the folding of MHC class I molecules at a critical step in peptide loading.  相似文献   

2.
An important mammalian defence strategy against intracellular pathogens is the presentation of cytoplasmically derived short peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes. MHC class I molecules assemble in the endoplasmic reticulum (ER) with chaperones, including calnexin and calreticulin, before binding to the transporter associated with antigen processing (TAP). We show here that the thiol-dependent reductase ERp57 (also known as ER60 protease) is involved in MHC class I assembly. ERp57 co-purified with the rat TAP complex (comprising TAP1 and TAP2), and associated with MHC class I molecules at an early stage in their biosynthesis. This association was sensitive to castanospermine, which inhibits the processing of glycoproteins. Human MHC class I molecules were also found to associate with ERp57. We conclude that ERp57 is a newly identified component of the MHC class I pathway, and that it appears to interact with MHC class I molecules before they associate with TAP.  相似文献   

3.
The assembly of newly synthesized MHC class I molecules within the endoplasmic reticulum and their association with the transporter associated with antigen processing (TAP) is a process involving the chaperones calnexin and calreticulin. Using peptide mapping by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify a new component, we now introduce a third molecular chaperone, the thiol-dependent reductase ER-60 (ERp57/GRP58/ERp61/HIP-70/Q2), into this process. ER-60 is found in MHC class I heavy chain complexes with calnexin that are generated early during the MHC class I assembly pathway. The thiol reductase activity of ER-60 raises the possibility that ER-60 is involved in the disulfide bond formation within heavy chains. In addition, ER-60 is part of the late assembly complexes consisting of MHC class I, tapasin, TAP, calreticulin and calnexin. In a beta2-microglobulin (beta2m)-negative mouse cell line, S3, ER-60-calnexin-heavy chain complexes are shown to bind to TAP, suggesting that beta2m is not required for the association of MHC class I heavy chains with TAP.  相似文献   

4.
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) is based on the ability to stabilise MHC class I molecules from mutant cell lines by the addition of suitable peptides. Such cell lines lack a functional transporter associated with antigen presentation (TAP) and as a result accumulate empty, unstable class I molecules in the ER. These dissociate rapidly in cell lysates unless they are stabilised by the addition of an appropriate binding peptide during lysis. The extent of stabilisation of class I molecules is directly related to the binding affinity of the added peptide. However, some MHC class I molecules, including HLA-B * 2705 and H-2Kk are unusually stable in their peptide-receptive state making them inappropriate for analysis using this assay or assays which depend on the ability of peptides to stabilise MHC class I molecules at the cell surface. Here we present an improved method that permits reliable measurements of peptide binding to such class I MHC molecules that are unusually stable in the absence of peptide. Cells are lysed in the presence of peptide and incubated at 4 degrees C. After 2 h, during which peptide binding to empty MHC molecules occurs, the lysate is heated to a temperature which preferentially destabilises those MHC molecules that remain empty. We have used this technique to assay peptide binding to HLA-B * 2705, as well as to the murine allele H-2Kk which also displays a stable phenotype when transfected into TAP-deficient T2 cells and show that this method represents a marked improvement over previous methods in terms of lower background signal and higher recovery of peptide bound molecules.  相似文献   

5.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

6.
Major histocompatibility complex (MHC) class I molecules are trimolecular complexes consisting of a heavy chain (HC), beta2-microglobulin (beta2m), and a short peptide. Assembly of MHC class I molecules is thought to take place early during biosynthesis. Deficiency in either beta2m or the transporter associated with antigen processing (TAP) results in accumulation of class I molecules in the endoplasmic reticulum (ER). In this study, we have assessed peptide binding to TAP and MHC class I in purified microsomes derived from wild-type, TAP1(-/-), beta2m-/-, and TAP1/beta2m-/- mice using a cross-linkable H-2Kb-binding peptide. This enabled us to study the influence of an intact TAP complex and beta2m on peptide binding to MHC class I and to analyze the stepwise interaction of peptide with TAP and MHC class I molecules. Peptide bound both immature and mature (terminally glycosylated) class I molecules in intact as well as permeabilized microsomes from wild-type mice. Efficient peptide binding to immature class I molecules was also detected in permeabilized microsomes from TAP1(-/-) mice. In contrast, no peptide binding to beta2m-free HC was detected in permeabilized microsomes from beta2m-/- and TAP1/beta2m-/- mice. However, the addition of exogenous beta2m allowed peptide binding to class I in permeabilized beta2m-/- and TAP1/beta2m-/- microsomes. These results demonstrate that a preformed class I HC middle dotbeta2m heterodimer is necessary for efficient peptide binding under physiological conditions. The observed peptide binding to class I in permeabilized TAP1(-/-) microsomes further suggests that TAP1 is not required for peptide binding to class I in the ER. Finally, kinetic studies allowed the demonstration of a stepwise binding of peptide to TAP, subsequent translocation across the ER membrane, a step that required ATP hydrolysis, and binding of peptide to preformed class I HC.beta2m heterodimers.  相似文献   

7.
Processing of exogenous hepatitis B surface antigen (HBsAg) particles in an endolysosomal compartment generates peptides that bind to the major histocompatibility complex (MHC) class I molecule Ld and are presented to CD8+ cytotoxic T lymphocytes. Surface-associated 'empty' MHC class I molecules associated neither with peptide, nor with beta2-microglobulin (beta2m) are involved in this alternative processing pathway of exogenous antigen for MHC class I-restricted peptide presentation. Here, we demonstrate that internalization of exogenous beta2m is required for endolysosomal generation of presentation-competent, trimeric Ld molecules in cells pulsed with exogenous HBsAg. These data point to a role of endocytosed exogenous beta2m in the endolysosomal assembly of MHC class I molecules that present peptides from endosomally processed, exogenous antigen.  相似文献   

8.
In human cells the association of MHC class I molecules with TAP is thought to be mediated by a third protein termed tapasin. We now show that tapasin is present in murine TAP-class I complexes as well. Furthermore, we demonstrate that a mutant H-2Dd molecule that does not interact with TAP due to a Glu to Lys mutation at residue 222 of the H chain (Dd(E222K)) also fails to bind to tapasin. This finding supports the view that tapasin bridges the association between class I and TAP and implicates residue 222 as a site of contact with tapasin. The inability of Dd(E222K) to interact with tapasin and TAP results in impaired peptide loading within the endoplasmic reticulum. However, significant acquisition of peptides can still be detected as assessed by the decay kinetics of cell surface Dd(E222K) molecules and by the finding that prolonged viral infection accumulates sufficient target structures to stimulate T cells at 50% the level observed with wild-type Dd. Thus, although interaction with tapasin and TAP enhances peptide loading, it is not essential. Finally, a cohort of Dd(E222K) molecules decays more rapidly on the cell surface compared with wild-type Dd molecules but much more slowly than peptide-deficient molecules. This suggests that some of the peptides obtained in the absence of an interaction with tapasin and TAP are suboptimal, suggesting a peptide-editing function for tapasin/TAP in addition to their role in enhancing peptide loading.  相似文献   

9.
MHC class I molecules bind short peptides for presentation to CD8+ T cells. The determination of the three-dimensional structure of various MHC class I complexes has revealed that both ends of the peptide binding site are composed of polar residues conserved among all human and murine MHC class I sequences, which act to lock the ends of the peptide into the groove. In the rat, however, differences in these important residues occur, suggesting the possibility that certain rat MHC class I molecules may be able to bind and present longer peptides. Here we have studied the peptide length preferences of two rat MHC class Ia molecules expressed in the TAP2-deficient mouse cell line RMA-S: RT1-A1c, which carries unusual key residues at both ends of the groove, and RT1.Aa which carries the canonical residues. Temperature-dependent peptide stabilization assays were performed using synthetic random peptide libraries of different lengths (7-15 amino acids) and successful stabilization was determined by FACS analysis. Results for two naturally expressed mouse MHC class I molecules revealed different length preferences (H2-Kb, 8-13-mer and H2-Db, 9-15-mer peptides). The rat MHC class Ia molecule, RT1-Aa, revealed a preference for 9-15-mer peptides, whereas RT1-A1c showed a more stringent preference for 9-12-mer peptides, thereby ruling out the hypothesis that unusual residues in rat MHC molecules allow binding of longer peptides.  相似文献   

10.
Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands. As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.  相似文献   

11.
The ability to directly load cell surface major histocompatibility complex (MHC) class I molecules with peptides provides a potentially powerful approach toward the development of vaccines to generate cell-mediated immunity. We demonstrate that exogenous beta2-microglobulin (beta2m) stabilizes human cell surface MHC I molecules and facilitates their loading with exogenous peptides. Additionally, using three-dimensional crystal structures and known interaction sites between MHC I heavy chains and beta2m, we engineered variants of human beta2m (hbeta2m) with a single serine substitution at residue 55. This alteration was predicted to promote hydrophobic interactions at the MHC I heavy chain/beta2m interface and displace an ordered water molecule. Compared with hbeta2m, the serine to valine substitution at residue 55 had improved ability to bind to cell surface HLA-A1, HLA-A2, and HLA-A3 molecules, facilitate exogenous peptide loading, and promote recognition by peptide-specific T cells. The inclusion of hbeta2m or higher affinity variants when pulsing cells with MHC-restricted peptides increases the efficiency of peptide loading 50-80-fold. Therefore, the inclusion of hbeta2m in peptide-based vaccines may increase cell surface antigen densities above thresholds that allow recognition of peptide antigens by the immune system, particularly for cryptic, subdominant, or marginally antigenic peptides.  相似文献   

12.
13.
Immunization of mice with gp96/grp94 heat shock proteins (HSPs) elicits tumor-specific cellular immunity to the tumors from which gp96 is isolated. However, the cDNA sequence of gp96 is identical among tumors and normal tissues. This raises the question regarding the structural basis of the specific immunogenicity of gp96. As HSPs bind a wide array of molecules including peptides, we have proposed that gp96 may not be immunogenic per se, but may chaperone antigenic peptides. Furthermore, gp96 is localized predominantly in the lumen of the endoplasmic reticulum (ER) suggesting that it may act as a peptide acceptor and as accessory to peptide loading of MHC class I molecules. We demonstrate here that gp96 molecules contain ATP-binding cassettes, bind ATP and possess an Mg(2+)-dependent ATPase activity. Gp96 preparations are also observed to contain tightly bound peptides, which can be eluted by acid extraction. These properties of gp96 are consistent with its proposed roles in chaperoning antigenic peptides and in facilitating MHC class I--peptide assembly in the ER lumen. We present a model to explain how interaction of gp96 with MHC class I may result in transfer of peptides to the latter.  相似文献   

14.
TAP can efficiently transport peptides up to twice as long as those bound to MHC class I molecules, suggesting a role for endoplasmic reticulum (ER) proteases in the trimming of TAP-transported peptides. To better define ER processing of antigenic peptides, we examined the capacity of TAP-deficient cells to present determinants derived from ER-targeted proteins encoded by recombinant vaccinia viruses. TAP-deficient cells failed to present antigenic peptides from internal locations in secreted proteins to MHC class I-restricted T lymphocytes. The same peptides were liberated from the C termini of a secreted protein and the lumenal domains of two membrane proteins delivered to the ER via different routes. These findings suggest that proteases in the secretory compartment can liberate C-terminal antigenic peptides from virtually any context. We propose that this activity often participates in the removal of N-terminal extensions from TAP-transported peptides, thereby creating optimally sized products for MHC class I binding. We further demonstrate that ER trimming of C termini can occur if we express an appropriate carboxypeptidase in the secretory pathway. The absence of such trimming under normal circumstances suggests that carboxypeptidase activity is generally deficient in the ER, consistent with the concordance between the specificity of TAP and MHC class I molecules for the same types of C-terminal residues.  相似文献   

15.
Tapasin is a 48-kDa endoplasmic reticulum (ER)-resident glycoprotein that binds to the transporter associated with antigen processing (TAP) and mediates an interaction between TAP and newly synthesized MHC class I molecules. It is also essential for the proper antigen presenting function of HLA-A*0101 (HLA-A1), HLA-A*0801 (HLA-B8) and HLA-B*4402 (HLA-B4402). We show here that while tapasin is required for HLA-A*0201 (HLA-A2) molecules to bind to TAP, its absence does not block the presentation of HLA-A2-restricted TAP-dependent epitopes to cytotoxic T lymphocytes indicating that, unlike HLA-A1, HLA-B8 and HLA-B4402, HLA-A2 has access to the TAP-dependent peptide pool even in the absence of tapasin. Nevertheless, the overall efficiency with which HLA-A2 was loaded with optimal, stabilizing peptides was impaired in the cell line .220, resulting in a significant increase in the fraction of HLA-A2 molecules being released from the ER in a "peptide-receptive" state.  相似文献   

16.
Major histocompatibility complex (MHC) class I molecules are heterodimers of a class I heavy chain and beta 2-microglobulin that bind peptides supplied by the MHC region-encoded transporters associated with antigen processing (TAP). Peptide binding by class I heterodimers is necessary for their maturation into stable complexes and is dependent on their physical association with TAP. In human mutant 721.220 cells, however, a novel genetic defect causes the failure of class I heterodimers to associate with TAP. This deficiency correlates with lack of expression of a glycoprotein, tapasin (TAP-associated glycoprotein), which has been found in association with class I heterodimers and TAP. Employing a transcomplementation analysis, we obtained evidence co-localizing the genetic defect of mutant 220 cells and the structural or a regulatory gene controlling the expression of tapasin on the short arm of chromosome 6, which includes the MHC. Expression of tapasin and the normal interaction of class I heterodimers with TAP are concomitantly restored, indicating the probable function of tapasin as a physical link between these complexes. In further support of this model, the absence of tapasin in mutant 220 cells correlates with reduced class I heterodimer stability, suggesting that tapasin may stabilize class I heterodimers and thereby enhance their association with TAP. These results further implicate tapasin in a mechanism that promotes peptide binding by class I heterodimers through their interaction with TAP.  相似文献   

17.
In studies of T cell responses to synthetic peptides we have observed agonist and antagonist activities associated with contaminants identified within the parent synthesis. The synthesis of two candidate analogues implied by a peptide contaminant formed during the synthesis of La 51-58 (IMIKFNRL) has been carried out. The peptide contaminant was 17-18 Da smaller than the parent peptide consistent with a modified asparagine residue at position 6 and so we synthesised both an aspartimide and a nitrile analogue, representing cyclisation or dehydration of the asparagine residue. The candidate aspartimide and nitrile analogues both bound empty MHC class I molecules to form allo determinants recognised by monoclonal antibodies. These results demonstrate that altered synthetic peptides can bind class I MHC molecules and prompt caution in the use of synthetic peptides as a source of immunising antigen.  相似文献   

18.
Most antigenic peptides presented to CD8+ T cells are generated from cytosolic precursors and are translocated by TAP into the endoplasmic reticulum, where they associate with MHC class I molecules. TAP-deficient cells exhibit a limited capacity to deliver peptides from cytosolic proteins to class I molecules. One candidate for an alternative peptide transporter is P-glycoprotein, which transports numerous substances, including peptides, across membranes. Elevation of P-glycoprotein expression is partially responsible for the resistance developed by neoplasias to chemotherapeutic drugs. Overexpression of P-glycoprotein has been reported to enhance the expression of class I molecules. Here, we investigated the role of P-glycoprotein in the generation of peptide-MHC complexes. We were unable to detect P-glycoprotein-mediated transport of synthetic peptides into the endoplasmic reticulum of either T2 cells (TAP-deficient) infected with a recombinant vaccinia virus (rVV) expressing P-glycoprotein or drug-resistant cells in which TAP is inactivated by a peptide from the herpes simplex virus ICP47 protein. Expression of rVV-encoded P-glycoprotein in T2 cells was unable to enhance cell surface expression of any of three MHC class I allomorphs tested. rVV-mediated expression of P-glycoprotein enabled T2 cells to produce limited amounts of class I-peptide complexes from cytosolic antigens, but this was not blocked by a drug that inhibits its transporter function, and a similar degree of presentation was mediated by functionally inactive mutated forms of P-glycoprotein. Thus, this was a nonspecific effect that we attributed to diminished membrane integrity resulting from P-glycoprotein overexpression. Taken together, our findings cast serious doubts that P-glycoprotein is a biologically significant transporter of cytosolic peptides.  相似文献   

19.
We have used the functionally distinct TAP alleles of the rat in cellular transfectants as tools to investigate how newly formed rat class I (RT1.A) molecules with distinct peptide requirements gain access to suitable peptides in the endoplasmic reticulum (ER). Normal maturation of RT1.Aa depends on the presence in the ER of peptides with C-terminal arginine, while restrictive TAP-B allelic group transporters fail to transport such peptides. In this situation, RT1.Aa is retained in the ER. We show that this retention is accompanied by accumulation of RT1.Aa in the ER, partly associated with TAP and partly free. In such cells, access to TAP of a second allelic product, RT1.Au, which does not require C-terminal arginine peptides, is competitively inhibited by the build-up of RT1.Aa. Nevertheless, RT1.Au loads and matures normally. Introduction of a permissive TAP-A allele competent to transport C-terminal arginine peptides releases RT1.Aa from the ER and restores RT1.Au interaction with TAP. Both class I alleles associate indiscriminately with permissive and restrictive TAP alleles. The data support the view that interaction with TAP is not a prerequisite for peptide loading by class I molecules, so long as suitable peptides are available in the ER. They further show that TAP association of a class I molecule depends on a competitive balance in the ER defined by the extent to which the peptide requirements of other class I molecules present are satisfied and not only by the intrinsic strength of the interaction with TAP.  相似文献   

20.
MHC class I molecules (MHC-I) display peptides from the intracellular pool at the cell surface for recognition by T lymphocytes bearing alphabeta TCR. Although the activation of T cells is controlled by the interaction of the TCR with MHC/peptide complexes, the degree and extent of the activation is influenced by the binding in parallel of the CD8 coreceptor with MHC-I. In the course of quantitative evaluation of the binding of purified MHC-I to engineered CD8, we observed that peptide-deficient H-2Ld (MHC-I) molecules bound with moderate affinity (Kd = 7.96 x 10(-7) M), but in the presence of H-2Ld-binding peptides, no interaction was observed. Examination of the amino terminal sequences of CD8alpha and beta chains suggested that H-2Ld might bind these protein termini via its peptide binding cleft. Using both competition and real-time direct assays based on surface plasmon resonance, we detected binding of empty H-2Ld to synthetic peptides representing these termini. These results suggest that some MHC molecules are capable of binding the amino termini of intact cell surface proteins through their binding groove and provide alternative explanations for the observed binding of MHC molecules to a variety of cell surface receptors and coreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号