首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
通过对前处理过程中关键环节进行单因素不同水平比较,选择出固相萃取柱、浓缩方式、氮气流量、水浴温度、质谱参数等因素的最优实验方案,建立一种简便省时及回收效果最佳的前处理流程。采用固相萃取液相色谱-电喷雾串联四极杆质谱法(HPLC/ESI-MS)检测微囊藻毒素-LR(MC-LR),选用0.2%甲酸甲醇溶液-0.2%甲酸水溶液梯度洗脱、选用HLB小柱、普通氮吹仪浓缩(氮气流量1.5 L/min、水浴温度38℃)平均回收率为89.3%。质谱优化结果表明:当定量离子质荷比995.8135锥孔电压49,碰撞能量54;995.8375.1锥孔电压49,碰撞能量50,MCYST-LR灵敏度高且响应值最大。所建立优化的前处理、检测方法,具有准确度高、灵敏度高、回收率高、分离效果更好的优点,可用于分析水体中痕量MCYST-LR。  相似文献   

3.
Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.  相似文献   

4.
In this study we report the synthesis of a series of composite nanostructures comprising LDH and TiO2 phases. The materials characterization showed that the LDH crystallites are encapsulated inside the TiO2 matrix after the anatase seeds are deposited on MgxAl-LDHs. The structure in which LDH phase is embedded into anatase matrix is unique bringing important advantages to the photocatalytic performances of the nanocomposites. The photocatalytic activity of the prepared nanocomposites was tested on the degradation of the methylene blue (MB) in aqueous solution. The photocatalytic activities of the nanocomposites were compared with commercial TiO2 nanoparticles Degussa P25. The nanocomposites exhibited superior photocatalytic activity in basic environment because the negatively charged surface of TiO2 nanoparticles at high pH attracts the positively charged methylene blue species.  相似文献   

5.
Mass-balanced (1)H/(2)H isotope dipeptide tags (MBITs) are presented for simultaneous protein quantitation and identification. MBIT is derived from N-acetyl-Ala-Ala dipeptide and conjugated to primary amines of target peptides. (1)H/(2)H isotopes are encoded in the methyl groups of N-acetylated dipeptide: one tag deuterated on the N-acetyl group and another on the C-terminal alanine. MBIT-linked peptides comigrate in reversed-phase liquid chromatography without significant (1)H/(2)H isotope effects and provide 2-plex quantitation signals at 114 and 117 Th as well as peptide sequence information upon MS/MS analysis with MALDI TOF/TOF. MBIT shows good quantitation linearity in a concentration range of 20-250 fmol. The performance of MBIT on protein quantitation and identification is further tested with yeast heat-shock protein (Hsp82p) obtained from three different physiological states. MBIT using nanogram-scale samples produces the relative abundance ratios comparable to those obtained from optical imaging of microgram-scale samples visualized with SYPRO Ruby stain. The MBIT strategy is a simple and low-cost alternative for 2-plex quantitation of proteins and offers possibilities of tuning the 2-plex signal mass window by replacing the N-terminal alanine with other amino acid residues.  相似文献   

6.
The present work aims to study the bulk and surface properties of the TiO2/clinoptilolite composite on the crystalline structure, superficial area, bandgap energy, zeta potential, particle size distribution, and chemical composition; in order to analyze the effect of the clinoptilolite proportion in the photocatalytic degradation of pollutants. TiO2/clinoptilolite composites were prepared by adding different mass proportions of clinoptilolite to a sol–gel bath containing TiCl4 as the titania precursor. Surface charge studies explain the larger sensitivity to composite ratio observed in the photocatalytic degradation of anionic pollutants than in cationic dyes. An optimum TiO2/clinoptilolite ratio of 90/10 was found to be the most efficient in terms of lower tendency to agglomeration, largest surface area, and increased crystallite size. Improvement in composite surface area occurs only at low clinoptilolite wt% and seems to be caused by lower agglomeration of nanometric TiO2 and acid-induced porosity in the zeolite.  相似文献   

7.
Lisdexamfetamine dimesylate (LDX), a long-acting prodrug stimulant indicated for the treatment of the attention-deficit/hyperactivity disorder (ADHD), was subjected to forced degradation studies by acid and alkaline hydrolysis and the degradation profile was studied. To obtain between 10–30% of degraded product, acid and alkaline conditions were assessed with solutions of 0.01?M, 0.1?M, 0.5?M, and 1?M of DCl and NaOD. These solutions were analyzed through 1?H NMR spectra. Acid hydrolysis produced no degradation in 0.01?M and 0.1?M DCl and 4.38%, 9.69%, and 17.75% of degradation LDX, respectively, in 0.5?M, 1?M (4h) and 1?M (4?+?12?h) DCl. And alkaline hydrolysis produced no degradation in 0.01?M and 0.1?M DCl and a degradation LDX extension of 8.5%, 14.30%, and 22.91%, respectively, in 0.5?M, 1?M (4h) and 1?M (4?+?12?h) NaOD. LDX solutions subjected to 1?M (4?+?12?h) acid and alkaline hydrolysis were evaluated by NMR spectra (1?H NMR, 13?C NMR, HSQC and HMBC). LDX degradation product (DP) was identified and its structure elucidated as a diastereoisomer of LDX: (2R)-2,6-diamino-N-[(2S)-1-phenylpropan-2-yl] hexanamide without their physical separation.  相似文献   

8.
We examine the use of external standards for quantitative measurement by 1H NMR of solution concentrations of natural products and other low molecular weight, hydrogen-containing compounds and show that precision and accuracy ca. 1% is obtainable with a commercial 11.7 T spectrometer when standards and analytes are contained in separate but identical sealed precision glass NMR tubes. Numerous factors contributing to the intensity of the NMR signals are evaluated. Precise measurements of 360 degrees pulse lengths for each sample provide direct corrections for variations in probe Q-factor that enable samples in different solvents to be compared, provided single-coil excitation and detection is used throughout. Samples need not be prepared in deuterated solvents if the 1H spectra of the solvents are simple enough for peak suppression by presaturation. The approach is particularly suitable for hazardous materials kept in sealed tubes and for the preparation of certified calibration solution reference materials for use with LC-MS and other techniques where deuterated solvents should be avoided.  相似文献   

9.
Volpi N 《Analytical chemistry》2007,79(16):6390-6397
A new method for the separation and identification of oligosaccharides obtained by enzymatic digestion of hyaluronic acid (HA) with hyaluronidase (EC 3.2.1.35) using on-line high-performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI-MS) is presented. Reversed-phase ion pairing-HPLC, based on tributylamine salts and a volatile mobile phase, provided excellent chromatographic resolution and separation was achieved for HA oligosaccharides containing 2-40 monomers (from 2- to 40-mers). Using the on-line ion trap mass analyzer, complete identification and structural information for each HA oligomer species was obtained. In particular, a series of negatively charged species of different m/z ratios are seen for each oligosaccharide. Smaller HA species, from 2- to 4-mers, exhibit mainly [M-H](-1) anions, whereas the 6-10-mers exist predominantly as the charge state of -2. The HA oligomers from 12- to 18-mers are mainly represented by [M-3H](-3) anions while species from 20- to 28/30-mers are characterized by a charge state of -4. HA oligosaccharides from 32- to 40-mers exist as [M-5H](-5) anions. Furthermore, for smaller HA species, from 4/6- to 18/20-mers, ESI-MS revealed, generally in low relative abundance, anions related to the loss of one/two monosaccharide unit(s) from the oligomers, and no odd-numbered anions were produced for HA species greater than 20-mers.  相似文献   

10.
In this work, easily processable and highly crystalline ZnO and TiO2 nanoparticles, with a narrow size distribution, obtained by using novel non-hydrolytic synthetic approaches were both tested for the photocatalyzed degradation of an organic dye, methyl red (2-(4-Dimethylamino-phenylazo)-benzoic acid)—C.I. 13020) and their behaviour comparatively examined with respect to TiO2 and ZnO commercial powders. The experiments were carried out using semiconducting oxides under UV and visible light illumination. Preliminary studies on the influence of various experimental factors as pH and dye concentration were performed. The obtained results demonstrated a high photocatalytic efficiency of nanosized semiconducting particles.  相似文献   

11.
Degradation of Congo Red (CR) dye in aqueous solutions was investigated by means of photocatalysis of TiO2 which was hydrothermally synthesized at 200 degrees C in 2 h, in anatase phase with 8 nm crystallite size. Efficiency of TiO2 in photocatalytic degradation under visible irradiation was studied by investigating the effects of amount of TiO2, irradiation time, initial CR concentration and pH. It was found that complete decolorization is achieved within 30 min of irradiation. Effects of nitrate and sulphate ions and humic acid on the degradation were also tested. The results were compared with Degussa P-25 TiO2 at the same degradation conditions. Degradation products were detected using LC-MS technique. The probable pathways for the formation of degradation products were proposed.  相似文献   

12.
Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously.  相似文献   

13.
We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach.  相似文献   

14.
以聚氨酯为骨架,在泡沫成型过程中加入颗粒活性炭,经炭化得到孔结构发达的聚氨酯泡沫炭,以其为基底采用浸渍法制备出TiO_2负载的具有光催化性能的复合材料。采用SEM观测不同活性炭量泡沫炭的表面形貌;采用BET吸附-脱附等温曲线考察制备不同的泡沫炭及复合材料的孔径结构;XRD分析不同产物的晶型结构;TG分析碳骨架热分解过程。以气相甲醛为模型物,评价泡沫炭/TiO_2复合材料在紫外灯光下对甲醛气体的光催化降解性能。结果表明,聚氨酯泡沫炭/TiO_2复合材料具有良好的催化降解甲醛功能,是吸附与降解协同作用的结果;当活性炭含量为35%,TiO_2的负载量为2%时,对甲醛吸附降解能力最好,达到85.3%。  相似文献   

15.
This paper presents the degradation of imidacloprid by ozonation. Solutions of 39.0 μg/mL imidacloprid were prepared either by dissolution of standard or by dilution of Gaucho Blé(?) seed loading solution and then ozonated under different conditions. The concentration of imidacloprid and oxidation products in both solutions was monitored by HPLC-UV as a function of the treatment time for a concentration of 100g/m(3) of ozone in the inlet gas. No significant difference was observed: in both cases, imidacloprid degradation was a pseudo-first order reaction with similar reaction rates (0.129-0.147 min(-1)), degradation by-products with the same HPLC retention times were observed and their concentrations as a function of the treatment time followed a very similar trend. The study of ozone concentration in the inlet gas (from 25 to 100g/m(3)) showed that imidacloprid degradation is also a first-order reaction with respect to ozone. The ozonation by-products were then collected and identified by ESI(+)-MS. A degradation pathway of imidacloprid was finally proposed.  相似文献   

16.
The separation process in reversed-phase high-performance liquid chromatography employing C18 phases is mainly due to hydrophobic interactions. The separation of tocopherol isomers, exhibited by the C30 phases, however, is additionally driven by shape selectivity. This phenomenon is investigated by suspended-state nuclear magnetic resonance spectroscopy using the saturation transfer difference technique, which was originally introduced to study protein-ligand interactions. The interaction strength between beta-/gamma-tocopherol and three different stationary phases was estimated qualitatively. The nuclear magnetic resonance data are compared to chromatographic data, and a similar mode of interaction between the analytes and the stationary phases is elucidated.  相似文献   

17.
Nanorods of ZnO and ZnO/CdO were synthesized by thermal decomposition of their respective acetate without any catalyst at 350 °C. It is a simple and low cost method to prepare ZnO and ZnO/CdO nanorods. The decomposition temperature of acetate and the formation of oxides were determined by thermogravimetric analysis before the synthesis process. The prepared samples were characterized by different techniques. The photocatalytic activity of ZnO/CdO was tested by the degradation of methylene blue (MB) in aqueous medium under visible light and the efficiency of the catalyst has been discussed in detail. The method is simple, fast and cost effective when compared to other methods.  相似文献   

18.
A facile aqueous solution process was used to synthesize well-crystalline ZnO nanocones at 60 degrees C by using zinc nitrate hexahydrate and sodium hydroxide. The morphological, structural and optical properties of the synthesized ZnO nanocones were investigated by using field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) equipped with high-resolution (HRTEM), X-ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy measurements. The structural and optical properties of the as-synthesized nanocones confirmed a pure and well crystalline product possessing wurtzite hexagonal phase. The as-synthesized ZnO nanocones were used as photocatalyst for the efficient photocatalytic degradation of acridine orange. The acridine orange was almost completely degraded within 105 minutes. This research demonstrates that the simply synthesized ZnO nanostructures could be efficient photocatalyst for the photocatalytic degradation of various organic dyes and chemicals.  相似文献   

19.

Herein, titanium dioxide (TiO2)-coated vertically aligned silicon nanowires (SiNWs/TiO2) were fabricated and evaluated for photocatalytic degradation of organic dyes. Aligned SiNWs arrays were prepared by facile metal-assisted chemical-etching process with varying the etching time that was followed by TiO2 nanoparticles coating using sputtering technique. The TiO2 film crystallized in pure anatase phase with an average crystalline size of 50 nm, as was elucidated with X-ray diffraction studies. SEM analysis showed nanowires with varying lengths from 2.5 to 13.5 µm and confirmed the homogenous surface decoration with TiO2. The homogeneous distribution of TiO2 nanoparticles on nanowires was co-evidenced with Energy-Dispersive X-ray spectroscopy (EDX) and Raman spectra analysis. The developed SiNWs/TiO2 was exploited for photocatalytic degradation of methylene blue; the role of hydrogen peroxide was also elucidated. The highest photocatalytic efficiency of 96% was achieved for SiNWs/TiO2 with optimum nanowire length of 3.5 μm. The developed photocatalyst was found to be almost stable even after 190 days (~?5 months) and could be used as reusable and easily removable photocatalysts. The current study highlighted the SiNWs/TiO2/H2O2 system as excellent candidate for water remediation applications.

  相似文献   

20.
Mesoporous-titania (TiO2) photocatalysts have been synthesized using polyethylene glycol (PEG) as a template in dilute acetic acid aqueous solution by hydrothermal process. The effect of PEG molecular weights and thermal treatment on the resultant structure and photocatalytic activity are investigated. Structural and phase compositional properties of the resultant photocatalysts are characterized by transmission electron microscopy, X-ray diffraction and nitrogen sorption analysis. When the molecular weights of PEG vary from 600 to 20,000, the particle sizes of mesoporous structure decrease from 15.1 to 13.3 nm and mean pore sizes increase from 6.9 to 10.6 nm. The chemical reactions of the formation of mesoporous-TiO2 during its synthesis have been proposed and discussed. The activities of mesoporous-TiO2 photocatalysts are evaluated and compared with Degussa P-25 using chloro-phenol as a testing compound. The reaction mechanism of photodegradation is also described on the basis of high performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号