首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale novel core-shell structural SnO2/ZnSnO3 microspheres were successfully synthesized by a simple hydrothermal method with the help of the surfactant poly(vinyl pyrrolidone) PVP. The as-synthesized samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results indicate that the shell was formed by single crystalline ZnSnO3 nanorods and the core was formed by aggregated SnO2 nanoparticles. The effects of PVP and hydrothermal time on the morphology of SnO2/ZnSnO3 were investigated. A possible formation mechanism of these hierarchical structures was discussed. Moreover, the sensor performance of the prepared core-shell SnO2/ZnSnO3 nanostructures to ethanol was studied. The results indicate that the as-synthesized samples exhibited high response and quick response-recovery to ethanol.  相似文献   

2.
Unloaded ZnO and Nb/ZnO nanoparticles containing 0.25, 0.5 and 1 mol.% Nb were produced in a single step by flame-spray pyrolysis (FSP) technique. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. FSP yielded small Nb particles attached to the surface of the supporting ZnO nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. Nb/ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thick films by spin coating technique. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The influence on a low dynamic range of Nb concentration on NO2 response (0.1-4 ppm) of thick film sensor elements was studied at the operating temperatures ranging from 250 to 350 °C in the presence of dry air. The optimum Nb concentration was found be 0.5 mol.% and 0.5 mol.% Nb exhibited an optimum NO2 response of ∼1640 and a short response time (27 s) for NO2 concentration of 4 ppm at 300 °C.  相似文献   

3.
Biomorphic ZnSnO3 hollow fibers have been fabricated using cotton as biotemplates. Cotton fibers are infiltrated with zinc nitrate and stannic chloride solution and subsequently sintered in air at high temperatures to produce the final ZnSnO3 hollow fibers. The samples have further distinctions in structure and morphology by X-ray diffraction and scanning electron microscopy. It showed that all the samples present an orthorhombic structure of high crystallinity, and the hollow fibers were composed of numerous ZnSnO3 nanorods. Furthermore, gas sensors were fabricated and an investigation of ethanol sensing properties has been conducted. The sensor, based on ZnSnO3 hollow fibers calcined at 500 °C, shows highly sensitive to ethanol with fast response, good selectivity and stability, indicating its potential applications for environment and food or the drinking status of drivers.  相似文献   

4.
ZnO nanocrystals with various morphologies were synthesized via a fast and facile microwave assisted method using zinc acetate as starting material, guanidinium and acetyl acetone as structure directing agents, and water as solvent. Reaction conditions, templates and pH of the reaction medium were adjusted in order to achieve nanorod, nanoparticle, and flower-like morphologies. As synthesized ZnO samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption analysis (BET). Response and selectivity of the samples to CO, CH4 and ethanol were measured in a flow system. It is shown that different morphologies of ZnO nanoparticles exhibit different responses and selectivities. Flower-like morphology is highly selective to CO, while nanorods and nanoparticles are selective to methane and ethanol, respectively. Moreover, in a wide range of temperatures, response of ZnO nanorods and nanoparticles towards CO is temperature independent.  相似文献   

5.
Polypyrrole (PPy) films complexed with phenylalanine were successfully synthesized via one-step emulsion polymerization. By incorporating phenylalanine into the conductive PPy backbone, highly functionalized PPy films have been produced and found to respond to ammonia gas. The chemical sensors based on the PPy-phenylalanine nanoparticle films displayed enhanced reproducible and reversible responses upon exposure to NH3 gas. Their response was strongly dependent on the amount of the phenylalanine. The PPy-phenylalanine films were characterized by UV, IR, and XPS spectroscopy and compared to the PPy films. The gas detection and reversible response mechanism are discussed on the basis of these analysis results.  相似文献   

6.
NO gas sensors, based on ZnO thin film (ZnOfilm), TiO2 nanoparticulate film (TiO2NP), and TiO2NP/ZnOfilm double-layer film, were fabricated, and their sensing characteristics towards NO gas were investigated in this study. The maximal response of a ZnOfilm deposited onto a rougher Al2O3 substrate, towards NO gas, was higher than that of a ZnOfilm deposited on a smoother glass substrate. Although the sensing response of the TiO2NPs itself towards NO gas was minute, the TiO2NP/ZnOfilm double-layer film showed enhanced response as compared with TiO2NP or ZnOfilm single-layer film. In addition, the sensor response of the TiO2NP/ZnOfilm double-layer film was strongly influenced by the annealing time for the film preparation; the maximum response to NO was enhanced about 6.2 times as the annealing time was increased from 30 min to 2 h. Based on the XPS results, the increase in the transition zone between TiO2NP and ZnOfilm along with the appearance of Ti3+ state was noticed when the annealing time was increased. With the high sensitive TiO2NP/ZnOfilm/Al2O3 electrode, the limit of detection (S/N = 3) can be achieved at 8.8 ppb. The double-layer TiO2NP/ZnOfilm also showed improved selectivities with respect to NO2 and CO.  相似文献   

7.
主要介绍了ZnO纳米棒修饰的石英晶体微天平(QCM)气体传感器的制备与测试。采用两步法在石英晶振片表面制备直径为100 nm的ZnO纳米棒敏感膜,构成QCM NH3传感器。检测系统为自主研发的基于LabVIEW平台的QCM气体传感器频率测试软件。检测NH3的体积分数为5×10-6~50×10-6,响应时间均在10 s以内,最大频差值为10.9 Hz,响应最大频差值与NH3体积分数呈现良好的线性关系。室温条件下,ZnO纳米棒敏感膜可以完全实现吸附解吸过程,具有可逆性。该传感器性能稳定,响应灵敏,具有重复性。  相似文献   

8.
The NO2 gas sensing characteristics of semiconductor type gas sensors with channels composed of necked ZnO nanoparticles (NPs) were investigated in this study. The heat treatment of the NPs at 400 °C led to their necking and coarsening. The response of the necked-NP-based sensors was as high as 100 when exposed to 0.2 ppm of NO2 at 200 °C. As the concentration of NO2 increased to 5 ppm, their response was enhanced to approximately 400. During the repeated injection of NO2 gas with a concentration of 0.4 ppm, the sensors exhibited stable response characteristics. Furthermore, the 90% response and recovery times of the gas sensor were as fast as 13 and 10 s, respectively. These observations indicate that the non-agglomerated necking of the NPs induced by the heat treatment significantly enhances the gas sensing characteristics of the NP-based gas sensors.  相似文献   

9.
Hierarchical flower-like and 1D tube-like ZnO architectures were synthesized by a microemulsion-based solvothermal method. Technologies of XRD, SEM and TEM were used to characterize the morphological and structural properties of the products. The influence of the flower-like and tube-like morphologies on their NO2 sensing properties was investigated. The experimental results showed that high-sensitivity NO2 gas sensors were fabricated. The sensitivity of the tube-like ZnO gas sensor was much higher than that of the flower-like ZnO gas sensor and the tube-like ZnO gas sensor exhibited shorter response time. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique was employed to investigate the NO2 sensing mechanisms. Free nitrate ions, nitrate and nitrite were the main adsorbed species during the adsorption, and NO also existed in the initial period of surface reoxidation. Furthermore, N2O was formed via NO and N2O2 stemmed from NO and increased upon rising temperature. Moreover, the PL spectra and the XPS spectra further proved that the intensity of donors (oxygen vacancy (VO) and zinc interstitial (Zni)) and surface oxygen species (O2 and O2) involved in the gas sensing mechanism leaded to the different sensitivities.  相似文献   

10.
Solid-state metal oxide gas sensors with zeolite overlayers have been developed as a means to improve sensor selectivity. Screen printed tungsten oxide (WO3) sensors were modified by the addition of acidic and catalytic zeolite layers. The sensors were characterised before and after sensing experiments using X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy. The sensors were tested against various gases and gas mixtures to assess their discriminatory behaviour. The results show that the sensors response can be tailored to be selective towards specific target gases by changing the zeolite; for example the H-ZSM-5 sensor gave a response 19 times greater to NO2 than an unmodified control sensor. It was observed that the WO3 based gas sensors showed a remarkable selectivity towards NO2 in a gas mixture. The sensors also showed high levels of stability and sensitivity and have potential to be used in electronic nose technology.  相似文献   

11.
M.  E.  M.B.  A.  L. 《Sensors and actuators. B, Chemical》1997,40(2-3):205-209
Polypyrrole thin films have been deposited onto a glass substrate by the Langmuir-Blodgett technique to fabricate a selective ammonia (NH3) gas sensor. The d.c. electrical resistance of the sensing elements is found to exhibit a specific increase upon exposure to different gases such as NH3, CO, CH4, H2 in N2 and pure O2. The polypyrrole thin-film detector shows a considerable increase of resistance when exposed to NH3 in N2, and negligible response when exposed to comparable concentrations of interfering gases such as CO, CH4, H2 in N2 and pure O2. The calibration curve for NH3 in N2 at room temperature is measured in the concentration range from 0.01 to 1%. The relative change of the electrical resistance is about 10% for the lower detectable limit of 100 ppm of NH3 in N2. The sensitivity of the Langmuir-Blodgett polypyrrole towards ammonia is considerably higher than that of the electrochemical polypyrrole. The fast rise time and the high sensitivity of the detector are reported as a function of number of the polypyrrole layers. Long-term aging tests of the selective NH3 gas sensor are performed.  相似文献   

12.
We report on electrical responses of tungsten oxide thin film ozone sensors based on a tungsten trioxide (WO3)/tin oxide (SiO2)/Si structure with interdigitated Pt electrodes. The influence of O2 concentration in the sputtering gas and working temperature of the sensor are investigated. Sensitivity to ozone increases with O2 content in the sputtering gas. It reaches its highest value for sensors fabricated with 50% O2. For these sensors, the best ozone sensitivity and shortest response and recovery times are obtained at a working temperature of 523 K. Ozone sensitivity is compared to other ozone sensors.  相似文献   

13.
In2O3 whiskers and bipyramidal nano-crystals were prepared by a carbothermal method. These were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), photoluminescence and Raman spectroscopy. These were studied for application to sensing of H2S gas. The single crystal whiskers were found to be sensitive to as low as 200 ppb of H2S gas at room temperature and showed saturation in response at 10 ppm. On the other hand, the films made of bipyramids were less sensitive to H2S gas and the response was found to be a nearly linear function of concentration in a concentration range of 10–80 ppm.  相似文献   

14.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

15.
WO3 nanocrystals have been prepared by a sol-gel route and characterized by X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy. The experimental results show that WO3 nanocrystals have a high crystallographic quality and a good dispersivity. The particles’ sizes are in the range of 25-100 nm. The fabricated WO3 nanocrystal-based sensors have an excellent sensitivity and selectivity to acetone, and display a rapid response and recovery characteristics. The developed sensors exhibit a detection limit down to 0.05 ppm at 300 °C, rendering a promising application in noninvasive diagnosis of diabetes. The response mechanism of the WO3 nanocrystal sensor to low concentration of acetone has been discussed based on the depletion layer model.  相似文献   

16.
Quantum size ZnO crystals have been synthesized successfully by a room temperature sol-gel process. Oleic acid (OA) has been used as capping agent to control the particle size of ZnO. The crystal structure and size of the ZnO are characterized by the X-ray diffraction (XRD) and transmission electron microscope (TEM). The XRD results show the as-synthesized ZnO has hexagonal wurtzite structure and the average crystallite size is 5.7 nm which is little less than TEM result. It is testified by photoluminescence (PL) and Raman spectra that the quantum size ZnO keeps the crystal structure of the bulk ZnO and possesses more surface defects. The quantum size ZnO has the highest response of 280 to NO2 and the highest selectivity of 31 and 49 corresponding to CO and CH4 at operating temperature of 290 °C. The effect of calcination temperatures on sensing property and transient response of the ZnO sensor are also investigated.  相似文献   

17.
J.D.  A.  J.R.   《Sensors and actuators. B, Chemical》2009,142(1):179-184
The authors present an ab initio study of NO2 and SO2 chemisorption onto non-polar ZnO and ZnO surfaces with the aim of providing theoretical hints for further developments in gas sensors. From first principles calculations (DFT-GGA approximation), the most relevant surface reduction scenarios are analyzed and, subsequently, considered in the chemisorption study. First, calculations indicate that NO2 adsorbs avidly onto Zn surface atoms. This is compatible with the oxidizing character of NO2. Second, results also explain the sensor poisoning by SO2 adsorption (since this molecule competes with NO2 for the same adsorption sites) and indicate that poisoning can only be reverted at typical operation temperatures (T ≤ 700 °C) in the case of stoichiometric ZnO surfaces.  相似文献   

18.
Epitaxially grown single layer and multi layer graphene on SiC devices were fabricated and compared for response towards NO2. Due to electron donation from SiC, single layer graphene is n-type with a very low carrier concentration. The choice of substrate is demonstrated to enable tailoring of the electronic properties of graphene, with a SiC substrate realising simple resistive devices tuned for extremely sensitive NO2 detection. The gas exposed uppermost layer of the multi layer device is screened from the SiC by the intermediate layers leading to a p-type nature with a higher concentration of charge carriers and therefore, a lower gas response. The single layer graphene device is thought to undergo an n-p transition upon exposure to increasing concentrations of NO2 indicated by a change in response direction. This transition is likely to be due to the transfer of electrons to NO2 making holes the majority carriers.  相似文献   

19.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

20.
Hollow ZnSnO3 microspheres were successfully prepared by hydrothermal method at 160 °C for 12 h. The prepared material was characterized by field emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and X-ray diffraction measurements (XRD). The average diameter of the hollow ZnSnO3 microspheres was in the range of 400-600 nm. Compared with solid ZnSnO3 microspheres structure, the hollow ZnSnO3 microspheres showed better response (S) to butane. To 500 ppm butane, the sensor response (S) of the hollow ZnSnO3 microspheres was 5.79 at the optimum operating temperature of 380 °C, and the response and recovery time were 0.3 s and 0.65 s, respectively. The sensitivities of sensors based on this material were linear with the concentration of butane in the range of 100-1000 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号