共查询到19条相似文献,搜索用时 62 毫秒
1.
为解决红外运动目标跟踪中的遮挡、形变等问题,提出一种基于粒子滤波的跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型。并将飞机目标的运动看作惯性受限的非平稳过程,采用微分线性拟合模型作为系统状态转移模型。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于Mean Shift算法。 相似文献
2.
红外摄像仪能够全天候工作且不会受限于像光线不足、漆黑夜晚等外界环境的干扰,但是红外图像成像质量差、分辨率低、信息单一等特点导致研究人体目标跟踪出现许多难点问题。主要贡献表现在以下三个方面:(1)对少有的公开的红外数据集进行详细归纳;(2)重点阐述了国内外在红外人体跟踪方面对Mean Shift算法和粒子滤波算法的改进方案;(3)重点介绍了融合红外成像与可见光成像实现红外人体跟踪的研究进展。 相似文献
3.
传统的粒子滤波算法通常使用大量粒子表示目标状态的后验概率密度函数,算法的计算量较大,跟踪的实时性较差,且无法对快速、遮挡目标进行准确跟踪.针对以上问题,提出了一种嵌入MeanShift(均值偏移)的粒子滤波算法,该方法充分利用了MeanShift聚类作用,使得粒子分布更加合理,不但提高了粒子的多样性,而且有效减少了描述目标状态的粒子数目.实验结果表明,改进的目标跟踪算法具有较强的鲁棒性和较好的实时性. 相似文献
4.
5.
针对红外图像序列中的小目标跟踪问题,在分析红外小目标特点的基础上,提出了一种基于特征融合的粒子滤波目标跟踪算法。该方法利用粒子滤波支持目标特征融合的优点,提出将灰度特征和分形特征相融合,并将融合后的信息用于粒子权值的计算,从而大大提高了跟踪算法的稳健性。实验结果表明,和传统的粒子滤波算法相比,该算法能够更加准确、有效地跟踪红外序列中的小目标。 相似文献
6.
众多的目标跟踪算法中,Mean—Shift跟踪算法有良好的实时性,对遮挡、目标变形具有一定的适应性,是公认的效果比较好的跟踪方法。但它也存在不足,传统的Mean—Shift算法当背景的直方图分布和目标的直方图分布类似时,或者目标受到光照、阴影等影响,或有干扰物体靠近目标时,在跟踪时很容易发生目标丢失。鉴于此,提出最先使用Kalman滤波器对距离相对比较远的红外弱小目标的大致运动位置做出目标估计,接着使用Mean—Shift跟踪算法在先前目标估计出的区域内做目标的跟踪匹配,并保证精度。实验结果指出,文中提出的算法对于跟踪系统的观察噪声扰动具有较强的鲁棒性。 相似文献
7.
粒子滤波方法是一种针对非刚性目标运动跟踪的有效工具。运用基于贝叶斯估计的粒子滤波算法,对复杂的运动背景下目标移动进行跟踪。论述了贝叶斯估计理论,推导粒子滤波过程,并将状态粒子决定的区域所对应的色彩直方图用作测量,与目标参考直方图相比较,得出最佳的后验估计。运用窗口粒子平均方法确定目标的坐标,实现跟踪。算法采用单目标以及多目标序列图象进行跟踪实验,并与均值移动(mean-shift)跟踪算法结果进行比较,证明该跟踪算法更为有效。 相似文献
8.
9.
10.
空间直方图融合了目标的颜色信息和颜色的空间分布信息,比传统的颜色直方图更具有目标鉴别能力。在基于粒子滤波算法的目标跟踪系统框架中,采用简单的随机漂移模型表示系统状态模型,通过空间直方图的相似度定义来建立系统观测概率模型,提出一种基于空间直方图的粒子滤波目标跟踪算法。实验结果表明,相比传统的基于颜色直方图的粒子滤波算法,提出的算法具有更好的鲁棒性。 相似文献
11.
12.
由于红外图像对比度低、色彩信息匮乏且灰度级动态范围小,基于红外成像的目标跟踪一直是本领域研究的难点和重点。提出了一种融合灰度核直方图和SURF(speeded up robust features)特征的红外目标跟踪算法。在首帧采用灰度核直方图和SURF特征分别描述目标模板,在以后每帧中利用均值漂移算法快速找到局部最优解。考虑到灰度直方图特征信息量少,跟踪误差逐渐累积,采用改进的SURF特征点匹配算法估算当前帧目标尺度和中心位置,及时修正累积误差,避免跟踪窗口漂移且能自适应调整跟踪窗口大小,此外更新目标模板,最终准确跟踪目标。真实场景实验结果表明,本文算法在目标外观发生较大尺度变化、周边具有相似表观物体时能稳定跟踪目标,具有很强的稳健性,且满足实时性要求。 相似文献
13.
目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。其中基于Mean Shift的运动目标跟踪算法因其计算量小,实时性好,简单易行等特点而受到广泛关注,但该算法在目标突变或严重帧丢失以及目标严重遮挡的情况跟踪效果不佳,留下了改进空间。在传统基于Mean Shift运动目标跟踪方法基础上,通过创建并维护多样性模板库为跟踪过程提供更丰富的目标描述信息,提高算法运动目标跟踪效果。实验结果表明,新算法较好地解决了在目标突变和严重帧丢失情况下不能准确跟踪目标的问题,并且对目标的完全遮挡也具有很好的鲁棒性。 相似文献
14.
提出一种基于混合粒子滤波的运动火焰跟踪算法。针对通用粒子滤波算法计算量大的问题,提出了混合粒子滤波,将Mean Shift算法嵌入到粒子滤波中,并用自适应运动模型和目标模型自动更新的策略改善算法性能。基于混合粒子滤波提出了火焰识别和火焰跟踪相结合的运动火焰自动跟踪算法,先火焰识别,再火焰跟踪,且跟踪时,如果估计目标与模型的相似度小于阈值则切换到火焰识别阶段。识别与跟踪的相互切换保证了跟踪结果的正确性。实验结果表明混合粒子滤波具有很好的跟踪效果,与粒子滤波和Mean Shift算法相比,提高了跟踪精度;基于混合粒子滤波的火焰跟踪算法能够跟踪复杂环境下的运动火焰,提供火焰的精确位置。 相似文献
15.
一种基于卡尔曼滤波的运动物体跟踪算法 总被引:4,自引:1,他引:4
针对实时视频监控领域中传统的Camshift算法不能有效解决遮挡和高速运动等问题,提出一种改进的Camshift算法与卡尔曼滤波相结合的运动物体跟踪算法。首先,通过二次搜索来调整搜索窗口的位置和大小,保证Camshift跟踪的可靠性;然后,在Camshift算法的基础上通过卡尔曼滤波对搜索窗口进行运动预测,保证实时跟踪。实验表明该方法具有较好的实时性,并能够有效地解决遮挡等问题。 相似文献
16.
粒子滤波算法是进行运动目标跟踪的一种重要方法。针对传统粒子滤波算法在进行目标跟踪时存在的计算量大、实时性不足的问题,提出一种基于二值掩码图像的粒子滤波目标跟踪快速算法。该算法在传统粒子滤波算法的每个帧处理阶段产生二值掩码图像,再结合权重选择方法移除背景中权重较小的粒子,保留权重较大的重要粒子。提出的算法可以有效减少参与计算的粒子数目,节约算法的计算成本,从而提高目标跟踪的实时性。与传统粒子滤波算法进行比较,实验结果表明,提出的算法不仅能够有效地提高跟踪速度,而且跟踪结果的准确性和鲁棒性也有所增强。 相似文献
17.
在使用粒子滤波的跟踪方法中,颜色直方图经常被用来作为目标特征。但是普通的颜色直方图易受与跟踪物颜色相似的背景和其他物体的干扰,并且在跟踪目标被部分遮挡后性能也将下降。为解决这些问题,受hog特征启发,提出一种分块重叠的颜色直方图,并且根据分块直方图特点,重新设计了粒子滤波系统的权重计算方法和模型更新方法。实验证明该系统优于传统的颜色直方图特征。 相似文献
18.
提出了一种改进的粒子滤波算法,在遮挡情况下,能鲁棒地跟踪运动目标.该方法是把改进的颜色直方图结合到粒子滤波的观测模型中,并提出了一种判断目标遮挡的分块检测遮挡的方法.首先对传统的以核函数赋权值的方法进行改进,把目标中心附近的像素都赋予最大的权值,目标的边缘由于遮挡等原因采用指数分布赋权值;在遮挡检测时,提出了把跟踪窗分为左右两个子部分,分别计算相似性度量的方法,提高了遮挡检测的实时性和准确性;同时,该算法对旋转和尺寸的变化具有鲁棒性.实验结果表明,与基本的粒子滤波算法相比,提出的新算法能更好的处理目标跟踪中的遮挡问题. 相似文献
19.
针对摄像机运动情况下的多目标跟踪问题,提出了基于粒子滤波的跟踪算法.在粒子滤波算法基础上,将二阶自回归过程作为系统状态转移模型,HSV颜色直方图作为观测模型,对视频中多个目标的位置、大小进行跟踪.实验结果表明,该算法能实时正确地跟踪多个目标,并对局部遮挡有较好的鲁棒性,也能在目标短暂消失导致跟踪失败后,在目标重新出现后及时捕获并继续进行跟踪. 相似文献