首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
AZ91镁合金高温变形本构关系   总被引:7,自引:0,他引:7  
王智祥  刘雪峰  谢建新 《金属学报》2008,44(11):1378-1383
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250-400℃,应变速率为0.001-1 s-1条件下流变应力的变化规律.结果表明,变形温度和应变速率均对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≥400℃、应变速率≤0.001 s-1时,流变应力随变形量的增加达峰值后呈稳态流变特征.并采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n随应变量的变化规律,建立了相应的热变形本构关系.经实验验证,所建立的本构关系能较好地反映AZ91镁合金实际热变形行为特征.  相似文献   

2.
AZ61镁合金高温变形应力修正及本构方程的建立   总被引:2,自引:1,他引:2  
有限元模拟日益成为金属成形工艺优化的有力工具,而工程材料变形行为本构方程的精确描述是保证模拟精度的关键之一。通过热模拟实验对AZ61镁合金的高温压缩变形行为进行研究,实验设备为Gleeble3500热模拟实验机,实验采用的温度为250、300、350、400和450℃,应变速率为0,01、0,1、1、10和50s^-1。研究发现,AZ61镁合金流变应力随变形温度的升高而降低,随应变速率的升高而升高。在高应变速率下,变形热引起的试样温升非常显著。为了真实地反应AT61镁合金高温压缩变形时的力学行为,对流变应力作出相应修正,并根据修正后的流变应力建立高温变形本构方程。  相似文献   

3.
使用Gleeble-1500热模拟机对ZK60镁合金进行应变速率0.001~1s-1,温度523~673K条件下的热压缩实验。分析ZK60镁合金热压缩过程中的真实应力-应变曲线,分别总结变形温度和变形速率对流变过程中峰值应力的影响,建立描述ZK60镁合金高温压缩变形过程中的流变应力本构模型。将该方程导入有限元分析软件中,对ZK60镁合金热压缩过程进行数值模拟,分析热压缩过程中工件内部的等效应力和等效应变场的变化。研究表明:在该实验条件下的ZK60镁合金热压缩的真实应力-应变曲线有明显的动态再结晶特征,在高温下或者低应变速率下,流变应力曲线的峰值应力变小;模拟所得到的应力-应变曲线与热压缩的测应力-应变曲线基本吻合,表明所求ZK60高温流变本构模型可以为ZK60镁合金热加工提供参考依据。  相似文献   

4.
在Thermecmastor-Z试验机上进行热压缩实验,在应变速率0.01~10 s~(-1)、变形温度900~1150℃条件下对TC27钛合金的变形行为进行研究并建立其本构方程。结果表明,该材料为温度和应变速率敏感材料。在变形初始阶段,流变应力随真应变的增加迅速增大,达到应力峰值后随真应变的增加缓慢降低,最后趋于相对稳定的状态。流变应力随温度的升高而降低,随应变速率的增加而增加。热压缩实验过程流变应力随应变速率和变形温度的变化规律可以用材料的本构方程来表征,变形激活能为Q=300 k J/mol。  相似文献   

5.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

6.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

7.
采用Gleeble-3500热模拟实验机,对AZ31镁合金在变形温度为523~723 K、应变速率为0.01~10.00 s-1、最大变形程度为60%的条件下进行热压缩实验.结果表明,流变应力随应变的增加而显著增大,到达峰值后逐渐降低并趋于稳态,变形呈明显的动态再结晶特征.变形温度和应变速率对流变应力影响显著,本文采用包含Arrheniues项的本构方程来描述AZ31镁合金的高温变形行为.  相似文献   

8.
在Gleeble 1500D热模拟机上对AZ40M镁合金在应变速率0.001~1 s-1、变形温度250~400℃下对热压缩变形行为进行研究。结果表明:AZ40镁合金热压缩变形的流变应力受到变形温度和应变速率的显著影响,可用Zener-Hollornon参数的双曲正弦函数形式进行描述。本实验条件下,AZ40M镁合金热压缩变形时的热变形激活能Q为161 kJ·mol-1,建立了流变应力的数学模型,其结果可为研究镁合金热变形特性及复杂形状零件的热锻成形工艺的制订提供指导。  相似文献   

9.
在变形温度为250~400℃,应变速率为0.003~1 s-1的条件下,采用热模拟试验机对AZ81-1Y镁合金进行了热压缩实验,研究其热变形行为,分析了其微观组织演变规律及真应力-真应变曲线,并结合双曲正弦本构模型建立了其流变应力本构方程,并对流变应力本构方程进行了验证.结果 表明:在一定的应变速率下,AZ81-1Y镁...  相似文献   

10.
在应变速率为1×10-3~1 s-1、温度为300~450℃条件下,采用Gleeble-3500型热模拟机对Mg-1.3Zn-1.7Ca(质量分数,%)镁合金(ZX115)进行单轴热压缩实验;通过分析ZX115镁合金的真应力-真应变曲线,探讨变形温度和应变速率对其流变曲线中峰值应力、峰值应变及Zener-Hollomom参数的影响,建立描述该合金高温压缩变形的本构方程。将本构方程应用于有限元分析软件DEFORM 3D中,并对ZX115镁合金热压缩过程进行数值模拟,利用后处理程序,分析工件内部的应变速率场、应变场和温度场变化。研究表明:温度越高或应变速率越低时,流变曲线所达到的峰值应力越小,而在相同的应变速率下,峰值应变也随着变形温度的升高而明显减小;ZX115合金热压缩过程具有明显的变形不均匀性,为了合理控制变形后的再结晶晶粒尺寸,可适当降低形变温度和应变速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号