首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 132 毫秒
1.
N235萃取镍钼矿硫酸浸出液中钼的研究   总被引:4,自引:0,他引:4  
对N235萃取镍钼矿酸浸液中的钼进行了实验研究,确定了萃取和反萃步骤的最优条件。结果表明,三级逆流萃取率可达99.7%,而一级反萃率可达95.5%,反萃液钼浓度约为100 g/L,整个工艺的金属钼直收率可达98%以上。通过该工艺可实现镍钼矿酸浸液中的镍钼分离,以及钼的富集和部分除杂。  相似文献   

2.
采用新型萃取剂HBL101从镍钼矿焙烧料高酸浸出液中直接萃取钼。考察有机相组成、料液酸度、相比、振荡频率、平衡时间、温度对钼萃取过程的影响,并绘制了HBL101萃钼等温曲线。结果表明,在优化的工艺条件下,钼萃取率达96.8%以上,有机相饱和容量为12.09g/L;负载有机相用纯水洗涤后经3级逆流氨水反萃,钼反萃率达99.9%以上,实现了钼镍分离及钼的富集转型。  相似文献   

3.
采用P204作为萃取剂富集分离石煤酸浸液中的钒和钼,考察了溶液pH值、反萃剂种类、反萃剂浓度、反萃相比对钒钼富集分离的影响.研究结果表明:经过Na2S2O3还原后的溶液,钒的萃取率可以达到84.1%,钼的萃取率可以达到81.1%;采用1.5 mol/L的硫酸溶液反萃负载钒和钼的有机相,钒的反萃率可以达到99%以上,钼不能被反萃;在O/A为(体积比)3∶1的条件下采用60 g/L的碳酸氢铵溶液可以将钼反萃,其反萃率为76.4%.采用不同的反萃剂,可以实现钒和钼的分离.  相似文献   

4.
使用新型萃取剂HBL110从粗硫酸镍溶液中直接萃取镍。结果表明,萃取的较优条件为:萃取剂皂化率60%、萃取相比VO:VA=2:1、料液起始pH=2.2、萃取时间5 min,经5级逆流萃取,镍萃取率为98.63%,铁、钴、锌、钙、镁的萃取分别为10.41%、22.86%、8.42%、1.75%、1.38%。有机相经酸洗后反萃,反萃的较优条件为:反萃剂H2SO4浓度1.0 mol/L、反萃相比VO:VA=4:1、反萃时间5 min,该条件下进行4级逆流反萃,镍的反萃率为98.85%,反萃液镍浓度为31.11 g/L,且反萃液杂质含量低。  相似文献   

5.
使用新型萃取剂HBL110从红土镍矿硫酸加压浸出液中直接萃取镍,考察了萃取剂浓度、平衡pH、相比对镍萃取的影响,并绘制HBL110萃镍等温线。结果表明,在有机相体积组成为50%HBL110+50%磺化煤油,料液pH为2.5,有机相皂化率60%,相比O/A=1/1,萃取时间5min,温度30℃的条件下,镍的单级萃取率达到96%,采用相比O/A=1/2,镍的5级逆流萃取率达到99%。负载有机相使用稀酸洗涤后,按照时间10min、相比O/A=4/1、温度30℃、硫酸浓度100g/L的优化条件进行4级逆流反萃,镍反萃率达到98.5%,反萃液镍浓度达到40g/L,且反萃液杂质含量低。  相似文献   

6.
采用N235+仲辛醇+磺化煤油萃取体系+氨水反萃体系对废石化催化剂萃钒余液进行钼的回收研究,考察了各因素对钼萃取率和反萃率的影响,并获得优化条件,同时对钼反萃液进行钼酸铵产品的制备。结果表明:在萃取条件为初始pH 2.0、萃取体系20%N235+5%仲辛醇浓度+75%磺化煤油、萃取相比O/A=1/5、萃取时间5 min的条件下,Mo萃取率达到99.23%;反萃条件为反萃相比O/A=5/1、氨水体积浓度15%、反萃时间3 min, Mo反萃率达到99.36%,反萃液中Mo浓度可满足沉钼要求;反萃液采用酸沉结晶法制备钼酸铵产品,钼以四钼酸铵产品析出,产品纯度为99.62%,达到了GB/T 3460—2007-MSA-3标准。  相似文献   

7.
采用P204作为萃取剂,磺化煤油为稀释剂,从锰钴镍溶液中二级萃取分离锰,有机相反萃取富集锰,考察各因素对锰萃取率及分离系数的影响并确定最优条件。结果表明,在室温下,一级萃取相比O/A=2.5,P204含量30%,pH=3.5,皂化率30%,锰萃取率为62.39%;二级萃取在P204含量30%,皂化率30%,O/A=2,锰的总萃取率达98.06%,锰与钴、镍分离系数分别为90.11、92.33。萃取液经硫酸反萃洗钴镍,按相比O/A=10,酸度70 g/L,可洗去85%以上的钴和镍。洗钴镍后液经硫酸反萃锰,按相比O/A=4,酸度110 g/L,可反萃98.27%的锰,反萃液钴、镍的浓度小于0.5 g/L。  相似文献   

8.
对低品位含铼复杂钼精矿进行氧压分解、萃取工艺研究。考察反应时间、氧分压、球磨时间、液固比等因素对钼转化率和溶出率的影响。结果表明,在230℃、反应时间2.5h、氧分压600kPa、液固比6的条件下氧压分解,钼转化率可达到98%以上,溶出率为20%左右。氧压分解液采用分步萃取法回收钼、铼,铼萃取率和反萃率分别达到97%和99%以上,钼萃取率和反萃率分别达到99%和97%以上。  相似文献   

9.
采用D2EHPA溶剂对含锌镍酸性溶液进行萃取分离锌、镍试验研究,在最佳萃取、反萃分离条件下,锌的萃取、反萃率分别为99.34%、99.79%,镍的萃取、反萃率分别为99.16%、99.58%,锌镍分离系数达25000以上,得到的含锌、含镍反萃液分别符合电解锌、电解镍的技术要求。  相似文献   

10.
复杂镍浸出液萃取净化的研究   总被引:1,自引:1,他引:0  
以D2EHPA为萃取剂,从钼镍矿的复杂镍浸出液中萃取分离锌、铜。考察了萃取平衡时间、D2EHPA体积浓度、相比(O/A)、料液pH对萃取分离锌、铜效果的影响,确定了D2EHPA萃取锌、铜的最佳条件。室温下萃取除杂的最佳工艺条件为:萃取平衡时间3 min,D2EHPA的体积浓度20%,相比1∶1,料液pH=2.0,一级萃取率锌为89.5%,铜为11.0%。负载有机相经1 mol/L的H2SO4反萃,锌、铜和镍均可完全反萃。经三级逆流萃取可将料液中锌降低到0.01 g/L,萃取率达98.9%。  相似文献   

11.
本文介绍了攀枝花硫钴精矿浸出净化液镍钴分离及钴产品制备的试验研究。钴镍分离采用P507萃取,钴的萃取率大于99.5%,镍的萃取率在0.01%以下。有机相用硫酸反萃得到硫酸钴溶液,用盐酸反萃得到氯化钴溶液。由氯化钴溶液可制取纯氧化钴粉;由硫酸钴溶液可制备结晶硫酸钴;由萃余液可沉淀出碳酸镍粗产品。  相似文献   

12.
采用焙烧—二段氨浸—萃取—反萃—铜电积—硝酸沉钼工艺流程处理低品位含铜钼精矿,最终产品为电解铜和钼酸铵。结果表明,铜回收率达到95%以上,钼回收率达到93%以上,产品均达到国标一等品标准。  相似文献   

13.
采用碳酸钠加氧化剂回收焙烧钼精矿氨浸浸渣中的钼,使氨浸渣中钼含量由5.0%降到1.0%左右,回收率90%;同时对5 g/L左右的碱浸液,采用溶剂萃取法进行回收,通过萃取、洗涤、反萃等工艺参数控制,使碱浸液钼含量从5 g/L降到0.5 g/L以下,反萃液钼含量90 g/L左右,达到钼的回收利用目的。  相似文献   

14.
研究了一种从彩钼铅粗精矿碱性浸出液中回收钼的新工艺。该工艺涉及镁盐除硅、N235萃取钼、氨水溶液反萃取钼、盐酸沉淀钼等工序。试验结果表明:在溶液中ρ(Mo)=9.2g/L、ρ(SiO2)=1.01g/L,除硅温度75℃,pH=8.5,反应1h,氯化镁加入量为理论量4倍条件下,除硅率达87.31%;以15%N235-10%仲辛醇-75%煤油溶液作为萃取剂、在Va∶Vo=2.5∶1、pH为1.7~2.0条件下,混合萃取3min,钼的3级逆流萃取率为99.55%;经反萃取和沉淀钼,最终获得钼质量分数64%以上的氧化钼产品。该工艺钼回收率高,除硅效果较好。  相似文献   

15.
本文针对钼镍矿难处理的技术现状,提出了一种加压酸浸、常压碱浸、萃取相结合的全湿法处理镍钼矿的新工艺。试验结果表明,在加压酸浸时,钼的转化率可以达到98.3%以上,镍的浸出率达到98.7%。经过碱浸、萃取后钼镍综合回收率达92%以上。  相似文献   

16.
分析了含大量氯离子的酸性溶液中钼的存在形态,论证了采用TRPO萃取剂直接从该浸出液中萃取钼的可行性。试验考察了萃取剂浓度、萃取时间、萃取温度、相比、萃取级数等萃取参数。在其他条件适宜,O/A=1/3时,两级逆流萃取可以萃取99.5%的钼。  相似文献   

17.
介绍了在硫酸介质中使用P507+N235双溶剂萃取体系萃取除铁的工艺应用。通过生产实践发现,铁以三价态被萃取,有机相由15%P507+5%N235+80%260#稀释剂组成,相比2∶1,铁萃取率达到98%以上,在反萃剂为250g/L稀硫酸溶液,相比4∶1的条件下反萃,铁反萃率达到98%以上,反萃液经均相渗析膜分离回收酸,渗析残液通过控制pH,可采用铁矾法、中和除铁和砷酸铁等工艺除铁,铁脱除率均可达到90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号