首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用高能球磨和真空烧结的方法制备TiC增强高铬铸铁(HCCI)基复合材料。利用SEM,DSC等方法对不同球磨时间的粉末进行分析,研究不同烧结温度对高铬铸铁基复合材料的显微组织、硬度及密度的影响,比较相同工艺下复合材料与高铬铸铁材料的耐磨性。结果表明:球磨12 h后的粉末颗粒大小趋于稳定,粉末活性提高,烧结性能改善,烧结试样中TiC均匀地分布在基体中。随着烧结温度的升高,复合材料内部晶粒逐渐长大,密度和硬度逐渐提高。在1280℃超固相线液相烧结的条件下烧结2 h后,致密度达94.17%,硬度和抗弯强度分别为49.2HRC和980 MPa。在销盘磨损实验中复合材料的耐磨性为单一高铬铸铁材料的1.52倍,磨损机制为磨粒磨损+轻微氧化磨损。  相似文献   

2.
3.
Powder metallurgical tests have been carried out in connection with an investigation of the recycling possibilities for grey cast iron swarf.The tests included powder production based on selected swarf. Here a differentiation is made between ferritic and pearlitic swarf.Powder press parameters have been examined on production presses and with experimental tools in laboratory scale.Sintering tests have been made with the green blanks produced. These tests were carried out in various atmospheres and at various temperatures.The properties of the sintered cast iron blanks were measured according to the following parameters: hardness, bending strength, structure, specific gravity and tribological characteristics;Additionally, a PM cast iron blank has been manufactured as a component for a Danfoss compressor. These results will also be presented.The tests show that if we can learn to control the manufacturing processes we have here a material possessing properties which, in relation to price, could mean new degrees of freedom for our designers.  相似文献   

4.
Metal–matrix composites (MMCs) are known as the most useful and high-tech composites in our world as well as aluminum (Al) as the best metal for producing these composites. Combining aluminum and zircon (ZrSiO4) will yield a material with the best corrosive resistance and mechanical properties like strength at high temperatures. Also, the abrasive wear behavior of these composites will be improved. In the present investigation, a study on aluminum/zircon composites has been carried out. Micro-structures of these composites in powder metallurgy conditions show different size distribution of zircon with different proportions in the composite. Also, there is a case-study about density and compressive strength and hardness of aluminum/zircon composites. The green specimens prepared by isostatic pressing of prepared powders with different zircon percentages, were sintered at two temperatures. These specimens were then investigated by different physical and mechanical testing methods to observe in which conditions the best properties would be obtained. The most improved compression strength was obtained with the specimen including 5% of zircon sintered at 650 °C.  相似文献   

5.
The present study investigates the thermal conductivity of bimodal SiC particulate distribution in aluminum matrix composites fabricated via powder metallurgy route. The effects of the SiCp reinforcement size distribution and processing parameters such as sintering time and temperature on the thermal conductivity have been examined. The Box–Behnken experimental array was employed to identify the effects of selected variables on the thermal conductivity of the composite. A reasonable augmentation in the thermal conductivity was observed with an increase in sintering time and %volume fraction of fine SiC particulates. It has been demonstrated that the matrix doped with fine SiC particulates (37?µm) occupied interstitial positions and formed continuous SiC–matrix network resulting in minimizing the micropores that contributed for good thermal conductivity, that is, 235?W/mK. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were conducted to evaluate the microstructure architecture and interfacial phase formation.  相似文献   

6.
Cu–Ni–Mo and Mo based steel foams having different porosity levels for high temperature applications were produced by the space holder-water leaching technique in powder metallurgy. Steel powders were mixed with binder (polyvinylalcohol) and spacer (carbamide), and compacted. Spacer in the green compacts was removed by water leaching at room temperature and porous green compacts were sintered at 1200 °C for 60 min in hydrogen atmosphere. The successful application of foams at higher temperatures requires a good understanding of their high temperature mechanical properties. Compression tests were carried out on steel foams with different porosities at temperatures varying from room temperature to 600 °C in argon atmosphere. Effect of high temperature on compressive properties of the steel foams was investigated. It was found that the compressive strength of steel foams was greater at elevated temperatures than that at room temperature. This occurs across a range of temperatures up to 400 °C. Beyond this point the compressive strength decreased as the temperature increased. The reason for the enhancement of the compressive strength of Cu–Ni–Mo and Mo based steel foams is expected to be due to the effect of the dynamic age-hardening.  相似文献   

7.
Journal of Materials Science - The bimodal Al–Mg alloy structure reinforced with carbon nanotubes was evaluated after the composites production through a modified flake metallurgy technique...  相似文献   

8.
粉末冶金法炭纤维/Mg复合材料的界面对其力学性能的影响   总被引:1,自引:0,他引:1  
采用表面化学镀镍前后的短炭纤维(Cf)做为增强体,纯镁粉为基体金属,通过粉末冶金法和热挤压制备镁基复合材料.采用SEM-EDS、TEM、XRD和拉伸等测试手段表征短炭纤维增强镁基复合材料的微观形貌、元素组成、物相组成及其力学性能.结果表明:炭纤维在复合材料中分布均匀且沿挤压方向定向排列;采用经过表面化学镀镍处理的短炭纤维与金属镁复合后界面结合状态优良,Mg2Ni物相的存在表明润湿性的改善是通过金属镁与涂层发生反应而实现;对比屈服强度测试值和理论计算值的大小,表明涂层炭纤维增强镁基复合材料的增强机理主要是界面载荷传递效应.  相似文献   

9.
元素粉末锻造法制备Ti-43Al-5V-4Nb合金的组织与性能   总被引:1,自引:0,他引:1  
以Ti、Al等元素粉末为原料,采用快速烧结方法和无包套锻造法制备尺寸为Ф50×10 mm的TiAl合金锻坯.快速烧结后,TiAl合金由TiAl、Ti3Al、B2、Ti和TiAl3相组成,并且该合金存在较多的孔隙,孔隙主要由偏扩散造成的;经过高温锻造后,其孔隙得到了有效的控制,相对密度达到93%;经过热处理后,该合金主要由TiAl和Ti3Al相组成,在室温下合金的屈服强度提高了110 MPa,达到480 MPa,室温延伸率到达0.83%;在700℃和750℃,其屈服强度分别为580 MPa和530 MPa,其延伸率分别为12%和27%.  相似文献   

10.
Fe-Co heterogeneous alloys fabricated by powder metallurgy techniques were hot rolled, cold rolled and then heat treated. These processes produced a type of fibre-reinforced composite which consisted of fibrous Fe and Fe-Co phases. The tensile strength of the alloys depended on the composition and degree of order of the Fe-Co phase. The rule of mixtures was applicable, provided that the dependence of strength in the Fe-Co phase on Co content was considered.  相似文献   

11.
Microstructure evolution of vapour-grown carbon nanofibre (VGCF)-reinforced aluminium matrix composites during fabrication and microstructure–property relationships of these materials were studied. Composites were fabricated using powder metallurgy, i.e. by mixing VGCFs and aluminium powder via ball-milling followed by sintering or hot extrusion. The mixing condition was selected to achieve small powder particle size and homogeneously dispersed VGCFs. Aluminium grains and VGCFs were elongated along the longitudinal direction of aluminium particles in the mixed powder. Detailed observation of the aluminium grains in the composites found grain size and morphology dominated by recrystallization. Apparently, grain growth was inhibited by VGCFs. Theoretical models considering strength increment due to grain refinement resulting from VGCF addition, load bearing of VGCFs, thermal mismatch of VGCFs and aluminium and Orowan effect were developed. Theoretical values coincided well with hardness, yield strength, and ultimate tensile strength of the composites, and thus the models could precisely explain the microstructure–property relationships.  相似文献   

12.
Lead-free FeS/Cu-Bi (FCB) self-lubricating composites were prepared via shift-speed ball milling (SSBM) and powder metallurgy. The microstructure and evolution of mixed powders were studied, and the mechanical and tribological properties of the FCB composites were tested. SSBM includes long-term low-speed ball milling (LSBM) and short-term high-speed ball milling (HSBM). In the early LSBM, the matrix phase CuSn10 powder was flattened into flakes, and the lubricating phases FeS and Bi were refined and gradually dispersed on the CuSn10 flakes. After short-term HSBM, FeS and Bi were further trapped on the CuSn10 flakes, which not only improved the bonding performance between the lubricating phase and copper alloy but also protected the continuity of the copper alloy matrix from additional damage. 6 + 1 h SSBM (6 h LSBM + 1 h HSBM) improved the mechanical properties, antifriction and wear resistance of FCB composites. Compared with traditional HSBM, SSBM provides a new way to prepare FCB self-lubricating composites with better comprehensive properties.  相似文献   

13.
Porous grey cast iron powder metallurgy parts were made from grey cast iron powder manufactured via target jet milling of machining scraps. The powders were used in the as-milled state without any further physical or heat treatment.Sintering was conducted at 1025, 1100 and 1175 °C in an argon atmosphere and the effect of sintering temperature on microstructure, sintered density and apparent hardness of the grey cast iron specimens pressed to 5.8 g/cm3 was investigated.Although diffusion processes were partially activated at 1025 °C, it was determined that a temperature of 1175 °C proved to be the ideal temperature for solid state sintering of grey cast iron parts. The hardness value and sintered density for the specimens sintered at 1175 °C were found to be 96 BHN and 6.1 g/cm3 (around 15% porosity) respectively, all of which lends itself to promising properties for making self-lubricating bearings and parts with sliding properties.  相似文献   

14.
Abstract

Argon atomised austenitic stainless steel (AISI 304) powder was characterized for its physical properties such as particle shape, microstructure, median particle size, particle size distribution, apparent density, tap density, and jlowrate. Subsequently, the tap density of the as received powder was improved to the desired level by adjusting the powder distribution followed by mixing and blending. This powder was subjected to hot isostatic pressing (hipping) at two different combinations of temperature and pressure to optimise the microstructure and mechanical properties. Mechanical properties of the stainless steel obtained by the powder metallurgy (PM) hipping route were found to be superior to those of conventionally processed wrought steel. The superior performance of PM hipped steel is attributed to its low oxygen content, fine grain size, and high degree of chemical homogeneity. Although the production of billets by the hipping route does not appear to be economical owing to the high capital cost of the hot isostatic press, the added advantage of obtaining a nearnet shape makes the process economically viable for production of intricate shapes.  相似文献   

15.
Research into biodegradable porous materials has been increasingly focused on iron-based materials because such materials possess suitable properties for orthopedic applications. In this study, we prepared porous iron with porosities of 32–82 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied the influence of initial powder size and compacting pressure on sample microstructure, contamination and mechanical characteristics. The experimental results were analyzed as well, using Gibson–Ashby model and this analysis showed a good agreement in theoretical and experimental data. Whereas increasing compression pressure decreased porosity, the use of finer iron powder led to an increase in porosity. Increasing the amount of space-holder material in the initial mixture increased the total porosity, improved compressibility and consequently decreased the number of pores originating from imperfect compaction. A higher compacting pressure and the use of finer powder enhanced both the flexural and compressive properties. Even the most porous samples prepared from the fine iron powder possessed mechanical properties comparable to human cancellous bone. Based on these results, we can claim that the use of fine initial iron powder is necessary to obtain highly porous iron, which appears to be suitable for orthopedic applications.  相似文献   

16.
Rapid solidification magnesium alloy powders produced by spinning water atomization process were hot extruded into rectangular bars, from which tensile and compression samples have been cut at 0°, 45° and 90° angles from the extrusion direction to study their anisotropy. Electron back-scattered diffraction analysis has been used to investigate the texture evolution during the extrusion process. Texture parameters like the Schmid factor and the intensity of (0 0 0 1) basal plane in the pole figure have been evaluated and correlated to the mechanical properties. Results have shown that the extruded rods exhibited high strength and relatively less anisotropy compared to other previously reported values for wrought magnesium alloys. Tensile and compression yield stresses have shown very similar values to each other at all loading directions. This limited anisotropy could be linked to both the fine grained and inter-metallic-compound-dispersed microstructure of the extruded alloys. Dynamic recrystallization behavior during hot extrusion has also been investigated in the present study.  相似文献   

17.
To obtain a compatible material of high hardness and high toughness, Hadfield steel matrix was reinforced by oriented high-chromium cast iron bars. The mechanical behaviors of the as-cast and water-quenched composites were comparatively studied with a Hadfield steel substrate. The experimental results showed that the alloy powders inside the flux-cored welding wires could be melted by the heat capacity of Hadfield steel melt and became high-chromium cast iron bars. The impact toughness of the water-quenched composite was higher than that of the as-cast composite and lower than that of the Hadfield steel. The wear rate of the water-quenched composite was 1.23 mg/h m2 at 0.3 kg and 2.93 mg/h m2 at 1.2 kg, which was lower compared with those of the as-cast composite and Hadfield steel. The impact toughness and wear resistance of the water-quenched composite were related not only to the combining actions of the Hadfield steel matrix and high-chromium cast iron bars but also to the effect of heat treatment. The wear behavior of the water-quenched composite was industrially tested as pulverizer plate.  相似文献   

18.
Microsize Powders of Ni and Cu were prepared by water atomization technique to fabricate metal matrix composites containing various percentages of nanosized boron nitride particles (1, 2, 3, 4, 5 wt. % of BN in a matrix containing (20 wt. %Ni and 80 wt. %Cu). The prepared mixtures were cold compacted under 400 MPa, and sintered for 2 h at 1000 °C in a controlled atmosphere of 3:2 N2/H2 gas mixtures. The microstructure and the chemical composition of the prepared powders as well as the consolidated composites were investigated by X-ray diffraction as well as field emission scanning electron microscope (FESEM) equipped with an energy dispersive spectrometer (EDS). The produced Cu and Ni powders have spheroid shape of size less than 100 microns, but the investigated BN has an equiaxed particle shape and particle size of ~ 500 nm. It has been also observed that BN and Ni particles were homogeneously distributed in the Cu matrix of the present BN/Ni-Cu composites. The density, electrical resistivity, saturation magnetization and hardness of the composites were measured. It was observed that, by increasing BN content, the relative density was decreased, while the saturation magnetization, electrical resistivity and hardness were increased.  相似文献   

19.
In this paper, a nano-scratch testing approach was used to measure and evaluate the abrasion wear resistance of high-chromium white cast irons in order to understand the wear mechanism in the interaction between the high-chromium white cast iron and the cBN cutting tool during the machining process. Scratch testing was performed on a nanoindentation instrument using a diamond indenter as the scratch tool. Linear multi-pass scratches in the same path were made on pre-worn surfaces of test materials. The correlation of the scratching resistance and tool wear measured from the machining is presented by the flank wear and maximum scratch depth. The appearance of the cutting edge on a cBN tool suggests that the abrasion wear is mainly related with a combined effect of the carbides and the matrix during machining the high-chromium white cast iron.  相似文献   

20.
Abstract

Acceptance of metal matrix composites for industrial applications depends upon improving properties using an economic production route, which includes the processing design. Two powder metallurgical routes have been used in the manufacture of Al 6061 metal matrix composites. The first involves blending, vacuum canning, and hot pressing from prealloyed powders and the second involves blending of elemental powders, liquid phase sintering, and subsequent hot rolling. These composites comprise 7·5 or 15 vol.-% of 7, 23, or 45 μm SiC particles. In this paper, the composite microstructure at each stage of the different processing routes has been examined and the aging behaviour investigated. Effects on the tensile properties of fabrication techniques, SiC particle size, and volume fraction are presented and discussed.

MST/3020  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号