共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
高分辨率遥感图像舰船目标检测是遥感图像理解任务中的热点研究问题.由于遥感图像中舰船目标存在成像视角单一、目标分布密集和目标尺度变化大等特点,直接将自然场景目标检测方法应用于遥感图像舰船检测任务中,并不能获得满意的效果.此外,自然场景目标检测任务中常用的水平矩形框对细长型舰船目标的定位精确度无法满足实际应用需求.因此,提出了基于旋转矩形区域的遥感舰船目标检测算法.首先,采用旋转矩形框完成舰船目标的定位.其次,提出兴趣区域特征金字塔池化模块,融合兴趣区域的多尺度池化特征以处理目标尺度变化较大的问题.最后,设计定位准确度预测分支,利用定位准确度预测值指导非极大值抑制算法,从而优化后处理的结果.在遥感舰船公开数据集HRSC2016上,通过3个级别任务(分别为单类、4类和19类舰船检测识别)上的实验结果验证了算法的有效性. 相似文献
3.
舰船作为海洋信息感知中的重要目标,其检测在军舰探测、精确制导等军用领域以及海面搜救、渔船监测等民用领域具有极其重要的战略意义.海洋遥感图像受云雾、风浪、海杂波和光照等干扰使得舰船检测具有挑战性.根据可见光遥感图像舰船目标检测特点提出粗检测和细鉴别相结合的技术路线.先基于视觉显著性的谱残差法对图像进行增强以提取目标候选区域,后根据舰船与干扰因素差异采用舰船方向梯度直方图特征对目标候选区域进行鉴别,提取真正的舰船目标.实验结果表明,上述算法舰船检测率高,对光照、海杂波干扰具有一定程度的鲁棒性,且能有效剔除碎云岛屿等干扰物,显著降低虚警率. 相似文献
4.
遥感图像中复杂海面背景下的海上舰船检测 总被引:5,自引:0,他引:5
针对遥感图像中复杂海面背景下海上舰船的检测问题展开讨论,在Itti视觉显著度模型的基础之上进行改进,提出一种基于特征显著度图的复杂海面上舰船的自动检测方法,解决了传统的阈值分割方法在遥感图像复杂海面背景下较难将目标与背景分离的问题.在多种不同复杂海面背景下的舰船检测实验中,与传统阈值分割方法比较,本文方法有较高的检测率和较低的虚警率. 相似文献
5.
高分辨率遥感图像港内舰船的自动检测方法 总被引:5,自引:0,他引:5
在高分辨率的光学遥感图像中,港口内停靠舰船的灰度、纹理特征与陆地接近,因此同行驶于海上的舰船相比,是较难实现自动检测的目标.考虑到港口几何布局稳定的特点,提出了一套基于地理信息的舰船目标检测算法.该算法结合矢量数据和栅格数据的优点,采用模板形式存储地理信息,并以自动阈值法进行目标的粗分割,充分利用先验信息和相关知识完成并联目标的切割和断裂目标的连接.通过仿真实验,证明该算法能准确、快速的实现港内舰船的自动检测. 相似文献
6.
目的 高分辨率遥感图像中,靠岸舰船检测有着广泛的应用前景,其主要难点在于舰船与港口陆地在空间上紧邻,在颜色和纹理特征上相似,舰船与港口陆地难以分割。针对这种情况,利用港口岸线平直的几何特点和靠岸舰船多为舷靠的停泊特点,提出一种基于投影分析的靠岸舰船检测方法。方法 首先,对原始图像进行预处理,利用K-means聚类算法与区域生长算法相结合的方式得到海陆分割图像,利用Sobel算子与Otsu分割结合的方式获取边缘图像;然后,通过改进的Hough变换提取直线特征,结合港岸几何特性定位港口岸线;再将海陆分割后的二值图像向沿岸线和垂直岸线两个方向进行投影,根据沿岸线方向投影形态确定和分离并靠舰船,根据垂直岸线方向的投影形态定位舰船目标;最后,利用舰船尺寸、长宽比、最小外接矩形占空比特征去除虚警。结果 在15个港口场景不同分辨率的遥感图像测试集上,本文方法整体检测率达到85.4%,虚警率达17.2%;限定分辨率范围在24 m的情形下,检测率提高到93.5%,虚警率降低至5.3%。结论 本文方法简单有效,无需港口先验信息,适用于多尺度和多方向的靠岸舰船目标检测任务,对不同类型舰船形态差异具有鲁棒性,且能够分离并靠舰船。 相似文献
7.
遥感图像中舰船朝向不确定性,舰船种类的多样性以及和其他海上及港口物体之间的相似性,使舰船检测的性能下降严重。针对这一问题,使用一种简单且有效的方法来训练有旋转不变性和Fisher判别的Mask R-CNN舰船检测模型,通过优化模型的目标函数以提高舰船检测性能,在保持原有检测模型结构不变的基础上引入两个正则化器,第一个正则化器加强训练样本旋转之前和之后的特征联系,第二个正则化器限制卷积神经网络有小的类内散度和大的类间散度。实验中,在Kaggle遥感图像船只检测数据集上验证了所提出的方法提高了检测遥感图像中舰船目标的性能。 相似文献
8.
遥感图像俯视角带来的目标朝向多样性影响了大长宽比舰船目标检测的旋转不变性。针对这一问题,提出了一个基于改进YOLOv3的倾斜边界框检测模型。通过引入角度预测实现倾斜边界框回归;提出一种旋转卷积集成模块,通过旋转卷积和旋转激活提高深度卷积网络(Deep Convolutional Neural Networks,DCNN)特征图对于角度变化的敏感性;将目标边界框倾斜角度预测建模为由粗粒度到细粒度的两次角度分类问题;将角度惩罚引入模型的多任务损失函数中,使得模型能够学习目标的角度偏移。通过对舰船目标标注数据集上的实验可以看到,所提的模型和经典YOLOv3模型相比平均精度提高了12.7%,同时能够保持单阶段目标检测的速度优势。 相似文献
9.
10.
针对CFAR检测方法在强海杂波环境中虚警率过高的问题,该文提出了利用二次Gamma核的目标检测方法对SAR图像舰船目标进行检测。该方法可以克服CFAR目标检测方法的缺陷,在强海杂波环境中能有效检测目标,通过实验证明了该方法大大提高了图像的平均信杂比,降低了检测的虚警率。 相似文献
11.
目的 在光学遥感图像中,针对舷靠舰船灰度和纹理特征与港口相近,传统方法检测效果不理想的问题,提出一种基于局部显著特征的舷靠舰船检测方法。方法 首先,对原始图像预处理得到海陆分割后的二值图像;然后,提取二值图像中的直线段作为局部显著特征检测舰船目标;再将直线段提取结果与舰首检测相结合,建立舷靠舰船检测模型;最后,通过计算舰船几何尺寸及环境信息分析确定舰船目标。结果 在两幅不同场景的光学遥感图像中验证本文方法并与其他算法进行对比,本文方法识别率可达100%,且不存在误检和漏检情况,相比于其他算法具有一定优势。在舰船背景复杂或停泊朝向不定时,文中方法可有效判别舰船停靠方向并对舰船目标进行正确标记。结论 在复杂背景环境及其他干扰下,应用本文方法检测舷靠舰船目标准确率高,鲁棒性强,具有较高适应性。 相似文献
12.
独特的拍摄视角和多变的成像高度使得遥感影像中包含大量尺寸极其有限的目标,如何准确有效地检测这些小目标对于构建智能的遥感图像解译系统至关重要。本文聚焦于遥感场景,对基于深度学习的小目标检测进行全面调研。首先,根据小目标的内在特质梳理了遥感影像小目标检测的3个主要挑战,包括特征表示瓶颈、前背景混淆以及回归分支敏感。其次,通过深入调研相关文献,全面回顾了基于深度学习的遥感影像小目标检测算法。选取3种代表性的遥感影像小目标检测任务,即光学遥感图像小目标检测、SAR图像小目标检测和红外图像小目标检测,系统性总结了3个领域内的代表性方法,并根据每种算法使用的技术思路进行分类阐述。再次,总结了遥感影像小目标检测常用的公开数据集,包括光学遥感图像、SAR图像及红外图像3种数据类型,借助于3种领域的代表性数据集SODA-A(small object detection datasets)、AIR-SARShip和NUAA-SIRST(Nanjing University of Aeronautics and Astronautics,single-frame infrared small target),进一步对主流的遥感影像目标检测算法在面对小目标时的性能表现进行横向对比及深入评估。最后,对遥感影像小目标检测的应用现状进行总结,并展望了遥感场景下小目标检测的发展趋势。 相似文献
13.
目的 遥感图像中的舰船目标细粒度检测与识别在港口海域监视以及情报搜集等应用中有很高的实际应用价值,但遥感图像中不同种类的舰船目标整体颜色、形状与纹理特征相近,分辨力不足,导致舰船细粒度识别困难。针对该问题,提出了一种端到端的基于关键子区域特征的舰船细粒度检测与识别方法。方法 为了获得更适于目标细粒度识别的特征,提出多层次特征融合识别网络,按照整体、局部子区域两个层次从检测网络得到的候选目标区域中提取特征。然后结合候选目标中所有子区域的信息计算每个子区域的判别性显著度,对含有判别性组件的关键子区域进行挖掘。最后基于判别性显著度将子区域特征与整体特征进行自适应融合,形成表征能力更强的特征,对舰船目标进行细粒度识别。整个检测与识别网络采用端到端一体化设计,所有候选目标特征提取过程只需要经过一次骨干网络的计算,提高了计算效率。结果 在公开的带有细粒度类别标签的HRSC2016(high resolution ship collection)数据集L3任务上,本文方法平均准确率为77.3%,相较于不采用多层次特征融合识别网络提升了6.3%;在自建的包含45类舰船目标的FGSAID(fine-gr... 相似文献
14.
针对传统舰船检测方法在高分辨率光学遥感影像中虚警率较高的问题,提出了一种适用于高分辨率光学遥感影像的舰船检测算法。利用能够表征地物纹理特征的二维图像熵结合区域生长原理实现海陆分离,在舰船目标分割阶段,引入视觉显著性模型,解决了不能分割暗极性舰船目标的问题,大部分场景下分割精度较高。最后在分割出的候选目标中,采用多特征量综合的方法剔除虚警。结果表明,该算法在舰船目标检测中有较高的检测率和较低的虚警率。 相似文献
15.
16.
目的 遥感图像目标检测是遥感图像处理的核心问题之一,旨在定位并识别遥感图像中的感兴趣目标。为解决遥感图像目标检测精度较低的问题,在公开的NWPU_VHR-10数据集上进行实验,对数据集中的低质量图像用增强深度超分辨率(EDSR)网络进行超分辨率重构,为训练卷积神经网络提供高质量数据集。方法 对原Faster-RCNN (region convolutional neural network)网络进行改进,在特征提取网络中加入注意力机制模块获取更多需要关注目标的信息,抑制其他无用信息,以适应遥感图像视野范围大导致的背景复杂和小目标问题;并使用弱化的非极大值抑制来适应遥感图像目标旋转;提出利用目标分布之间的互相关对冗余候选框进一步筛选,降低虚警率,以进一步提高检测器性能。结果 为证明本文方法的有效性,进行了两组对比实验,第1组为本文所提各模块间的消融实验,结果表明改进后算法比原始Faster-RCNN的检测结果高了12.2%,证明了本文所提各模块的有效性。第2组为本文方法与其他现有方法在NWPU_VHR-10数据集上的对比分析,本文算法平均检测精度达到79.1%,高于其他对比算法。结论 本文使用EDSR对图像进行超分辨处理,并改进Faster-RCNN,提高了算法对遥感图像目标检测中背景复杂、小目标、物体旋转等情况的适应能力,实验结果表明本文算法的平均检测精度得到了提高。 相似文献
17.
目的 基于光学遥感图像的舰船目标识别研究广受关注,但是目前公开的光学遥感图像舰船目标识别数据集存在规模小、目标类别少等问题,难以训练出具有较高舰船识别精度的深度学习模型。为此,本文面向基于深度学习的舰船目标精细识别任务研究需求,搜集公开的包含舰船目标的高分辨率谷歌地球和GF-2卫星水面场景遥感图像,构建了一个高分辨率光学遥感图像舰船目标精细识别数据集(fine-grained ship collection-23,FGSC-23)。方法 将图像中的舰船目标裁剪出来,制作舰船样本切片,人工对目标类别进行标注,并在每个切片中增加舰船长宽比和分布方向两类属性标签,最终形成包含23个类别、4 052个实例的舰船目标识别数据集。结果 按1:4比例将数据集中各类别图像随机划分为测试集和训练集,并展开验证实验。实验结果表明,在通用识别模型识别效果验证中,VGG16(Visual Geometry Group 16-layer net)、ResNet50、Inception-v3、DenseNet121、MobileNet和Xception等经典卷积神经网络(convolutional neural network,CNN)模型的整体测试精度分别为79.88%、81.33%、83.88%、84.00%、84.24%和87.76%;在舰船目标精细识别的模型效果验证中,以VGG16和ResNet50模型为基准网络,改进模型在测试集上的整体测试精度分别为93.58%和93.09%。结论 构建的FGSC-23数据集能够满足舰船目标识别算法的验证任务。 相似文献
18.
目的 针对高分辨率遥感影像舰船检测受云雾、海浪以及海岛等复杂因素干扰,存在虚警率高、漏检率高、目标检测和识别困难等问题,提出一种联合视觉显著性特征与卷积神经网络的海面舰船目标检测方法。方法 基于频率域相位谱显著性检测能够有效抑制高分辨率遥感影像上云层、海面杂波干扰的特点,计算影像多尺度显著图并进行加权融合。采用对数变换对融合后的图像进行空间域灰度增强以提高目标与背景的区分度,利用灰度形态学闭运算填充舰船目标孔洞,采用大津分割法来提取疑似舰船目标作为兴趣区域。最后构建舰船样本库,利用迁移学习的思想训练卷积神经网络模型,对所有兴趣区域切片进行分类判断和识别,得到最终检测结果。结果 利用多幅不同背景下的高分辨率遥感影像,分别从视觉显著性检测、舰船粗检测与船只类型识别3个方面进行实验验证,选取检测率、虚警率、识别率3个指标进行定量评价。结果表明,本文方法相比于其他方法能有效排除云雾、海岛等多种因素的干扰,检测率、虚警率、识别率分别为93.63%、3.01%、90.09%,明显优于其他算法,能够实现大范围影像上多种类型舰船的快速准确检测和识别。结论 本文将图像视觉显著性检测快速获取图像显著目标的特点与卷积神经网络在图像分类的优势相结合,应用于遥感影像的海域舰船目标检测,能够实现对复杂背景下舰船目标的检测和船只类型的精细化识别。 相似文献