首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxy resin was encapsulated in poly(urea–formaldehyde) microcapsules using an in situ dispersion polymerization technique. The efficiency of Ni and Cu–imidazole complexes as latent hardeners was compared to that of 2-methylimidazole. Calorimetric studies revealed higher reactivity of the nickel complex toward oxirane functionalities. Both the complexes could effectively cure the epoxy released from within the microcapsules in the event of damage followed by thermal treatment. The curing could be effected at lower temperature (Tonset = 145°C) using [Ni(2-Me-ImidH)4Cl]Cl as compared to [Cu(2-Me-ImidH)4Cl]Cl (Tonset = 152°C). A healing efficiency of 100 ± 2% could be achieved at 30% microcapsule loading, irrespective of the type of metal complex used.  相似文献   

2.
The aim of this work was to determine the influence of protein content on the physicochemical properties of protein‐loaded poly(ε‐caprolactone) (PCL). To achieve this goal, bovine serum albumin (BSA), an example of protein was encapsulated within PCL matrix by emulsion solvent evaporation method. The polymer matrix's rheological properties, hydrophobicity, molecular weight (MW), and thermal behavior were determined. Particle characteristics such as BSA loading, surface area, mean size, morphology, and in vitro release profile were also assessed. After encapsulation process, the polymer crystallinity and crystallization point were markedly increased suggesting that a nucleation phenomenon occurred. The increase in PCL MW (from 46. 7 to 179.4 kDa) led to an increase of both particle size and encapsulation efficiency that was consistent with rheological data. The increase of protein content from 1.6 to 11.5% (w/w) influenced considerably particle's specific surface area and decreased the rate of protein release. Together, these results suggest that beside the nature of the carrier polymer, protein content may have implication on their controlled release, the coating of particle by protein, and on the carrier polymer chemistry and degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1042–1050, 2006  相似文献   

3.
Polymeric microcapsules enclosing Saccharomyces cerevisiae were prepared by radical suspension polymerization via water-in-oil-in-water emulsion. Trimethylolpropane trimethacrylate and 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) were used as monomer and radical initiator, respectively. A culture medium with suspended yeast cells, monomer solution with the dissolved radical initiator, and poly(vinyl alcohol) aqueous solution were used as inner aqueous phase, oil phase, and outer aqueous phase, respectively. The influence of microcapsule preparation parameters on the viability of encapsulated cells and encapsulation efficiency was investigated. The radical polymerization process did not cause significant damage to encapsulated yeast cells. Decreased weight ratio of aqueous phase to oil phase resulted in increased encapsulation efficiency of the cells. The diameter of the microcapsules could be controlled by varying the agitation rate.  相似文献   

4.
In this research, preparations of polymer microcapsule encapsulated methyl anthranilate (MA) as an essential oil model by both microsuspension conventional radical polymerization (ms CRP) and microsuspension iodine transfer polymerization (ms ITP) using methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) copolymer as the polymer shell were studied. In the case of ms CRP, a large amount of free polymer particles nucleated in aqueous medium were obtained. Using ms ITP, the free polymer particle formation was significantly depressed. Iodoform (CHI3) as a chain transfer agent with 0.8 wt% relative to the monomer, such a phenomenon was not observed. Various emulsifiers (oleic acid, Span 80 and PEG 30 dipolyhydroxystearate (DPHS)) with low hydrophile–lipophile balance value were used to retain MA in the monomer droplets or polymerizing particles. DPHS is the most effective emulsifier to retain MA in microcapsules giving 58% encapsulation at 20 wt% of DPHS relative to MA. In addition, from the controlled release study, only 55 wt% of the encapsulated MA was released by 90 days. Polymer microcapsule encapsulated MA using an MMA‐EGDMA copolymer shell with a high percentage of encapsulation and without free polymer particles was successfully prepared for the first time. Based on slow release of the encapsulated MA, the prepared microcapsules could be used in various applications. © 2017 Society of Chemical Industry  相似文献   

5.
The pH-responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogel microparticles containing vitamin B12 were prepared with emulsion polymerization. Both microcapsule and microsphere were easily produced by simply changing the sequence of ingredient addition during the emulsion polymerization. The microparticles showed the faster and larger release of vitamin B12 due to the higher swelling of hydrogel by electrostatic repulsion of carboxylate groups in poly(acrylic acid) as the pH was changed into more basic condition. The microcapsules showed a faster release than the microspheres did due to the less hindered passage through the thinner shell of microcapsules. The poly(vinyl alcohol)/poly(acrylic acid) hydrogel microparticles either protected or released the vitamin B12 effectively depending on pH.  相似文献   

6.
A family of hydrophilic and flexible epoxy polymers was prepared from the reaction of poly(oxyalkylene)amines and diglycidyl ether of bisphenol‐A (DGEBA) at 1:1 molar ratio of N H to epoxide. The use of a high molecular weight (MW = 1000–6000) poly(oxyethylene–oxypropylene)amine and a low MW amine as curing agents provided epoxy materials with good properties in toughness and hydrophilicity. The hydrophilicity, probed by surface resistivity of these cured materials, was found to be affected by the nature and weight content of poly(oxyethylene) segment in the polymer backbone, and also by the degree of crystallinity. Specifically, in the presence of a water‐soluble poly(oxyethylene–oxypropylene)diamine of MW 2000 the cured epoxies can reach surface resistivity as low as 108.6–9.6 Ω/□. In comparison, the water‐insoluble poly(oxypropylene)diamine of MW 2000 afforded a higher surface resistivity of 1010.5 Ω/□ because of the difference in hydrophilicity between oxyethylene and oxypropylene functionalities. Poly(oxypropylene)diamine of MW 230 as the sole curing agent generated an epoxy with even higher surface resistivity of 1013 Ω/□ due to a highly crosslinking structure. With proper selection of mixed poly(oxyethylene–oxypropylene)diamine (25 wt%) and 2‐aminoethanol (9 wt%), the DGEBA cured polymer had an appropriate surface resistivity of 109.8 Ω/□ for antistatics. Moreover, this material was extremely ductile in appearance and showed over 500 % elongation at break during mechanical tests. The high flexibility is rationalized by the balanced chemical structure of poly(oxyalkylene) segments and bisphenol‐A distributed in a slightly crosslinked system. © 2000 Society of Chemical Industry  相似文献   

7.
李德玲  张青  刘入洋  刘菲 《化学世界》2012,53(9):539-542
以W/O/W复相乳化法,聚乳酸为壁材、水杨酸钠为芯材,制备聚乳酸/水杨酸钠微囊。聚乳酸/水杨酸钠微囊的工艺条件为:水杨酸钠溶液浓度为40 mg/mL,聚乳酸溶液浓度为25mg/mL,聚乙烯醇溶液浓度为2mg/mL,内水相水杨酸钠体积为2mL,油相聚乳酸溶液体积为10mL,外水相聚乙烯醇溶液体积为60mL,即内水相与油相比为1∶5,油相与外水相体积比为1∶6。聚乳酸/水杨酸钠微囊的包封率为75.70%。  相似文献   

8.
The pH‐sensitive poly(vinyl alcohol)/poly(acrylic acid) hydrogel microcapsules containing vitamin B12‐loaded Al2O3 core were prepared with a three‐step emulsion polymerization. Al2O3 was chemically treated with HCl or NaOH solutions at room temperature for 24 h to modify the binding properties with vitamin B12. The colon‐targeted release characteristics of vitamin B12 from the microcapsules were evaluated at different pHs. These microcapsules showed the faster and larger release of vitamin B12 due to the high swelling of microcapsule shell as the pH was changed into more basic condition. However, these microcapsules showed the slower and less release of vitamin B12 as the acid value of Al2O3 increased due to the strong binding interaction between Al2O3 core and vitamin B12 even though the initial loading of vitamin B12 was higher. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The preparation of microcapsules containing perphenazine by solvent evaporation using ethyl cellulose is described. The microparticles are formed after solvent evaporation and polymer precipitation. The drug was dissolved in a polymer solution and emulsified into an aqueous phase to form microcapsules. To study the effects on particle size, encapsulation efficiency and morphology, three different molecular weights of ethyl cellulose (Mw=47000, 71000 and 99000) were used. Covalent bonding of drugs to polymers via hydrolytically or enzymatically cleavable covalent bond was achieved for sustained drug delivery. The release rate of perphenazine from these systems was investigated. © 1998 Society of Chemical Industry  相似文献   

10.
This article was aimed at preparation and characterization of drug delivery carriers made from biodegradable polyhydroxyalkanoates (PHAs) for slow release of tetracycline (TC) for periodontal treatment. Four PHA variants; polyhydroxybutyrate (PHB), poly(hydroxybutyrate‐co‐hydroxyvalerate) with 5, 12, and 50% hydroxyvalerate were used to formulate TC‐loaded PHA microspheres by double emulsion‐solvent evaporation method. We also compared the effect of different molecular weight (Mw) of polyvinyl alcohol (PVA) acting as surface stabilizer on particle size, drug loading, encapsulation efficiency, and drug release profile. The TC‐loaded PHA microspheres exhibited microscale and nanoscale spherical morphology under scanning electron microscopy. Among formulations, TC‐loaded PHB:low Mw PVA demonstrated the highest TC loading with slow release behavior. Our results showed that the release rate from PHA microspheres was influenced by both the type of PHA and Mw of PVA stabilizer. Lastly, TC‐loaded PHB microspheres showed efficient killing activity against periodontitis‐causing bacteria, suggesting its potential application for treating periodontal disease. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44128.  相似文献   

11.
In this article, we have studied the effect of microcapsule shell material on the mechanical behavior of self‐healing epoxy composites. Liquid epoxy healant was encapsulated in melamine‐formaldehyde (MF) and urea‐formaldehyde (UF), using emulsion polymerization technique to prepare microcapsules of different shell walls. The core content of the microcapsules, as determined by solvent extraction technique was found to be 65 ± 4%, irrespective of the shell wall of microcapsule. Morphological investigations reveal a rough texture of the spherical microcapsules, which was attributed to the presence of protruding polymer nanoparticles on the surface. Epoxy composites containing UF and MF microcapsules (3–15% w/w) were prepared by room temperature curing and their mechanical behaviour was studied under both quasi‐static and dynamic loadings. The tensile strength, modulus, and impact resistance of the matrix was found to decrease with increasing amount of microcapsule in the formulation, irrespective of the shell wall material used for encapsulation. Interestingly, substantial improvement in the fracture toughness of the base resin was observed. Morphological investigations on the cracked surface revealed features like crack pinning, crack bowing, microcracking and crack path deflection, which were used to explain the toughened nature of microcapsule containing epoxy composites. Our studies clearly indicate that the microcapsule shell wall material does not play any significant role in defining the mechanical properties of the composites. In addition, presence of secondary amine functionalities in UF and MF shell wall do not interfere with the reaction of epoxy with triethylene tetramine hardener during the curing process. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40572.  相似文献   

12.
In this work, poly(L-lactic acid) film was coated with SiOx by the plasma-enhanced chemical vapor deposition with different deposition times. Compared with the neat poly(L-lactic acid) film, the oxygen (O2), carbon dioxide (CO2), nitrogen (N2), and water vapor permeability of the poly(L-lactic acid)/SiOx60 film (depositing for 60?min) decreased by 40.7, 30.6, 58.7, and 53.4% at 25°C, respectively. After treated by the SiOx deposition, the gas permselectivity of the poly(L-lactic acid)/SiOx60 film, such as α(CO2/O2), α(O2/N2), and α(CO2/N2), increased by 17.2, 43.9, and 67.5% at 25°C, respectively. In addition, Young’s modulus and tensile strength of poly(L-lactic acid)/SiOx60 film increased by 107.2 and 49.3%, respectively. Moreover, the poly(L-lactic acid)/SiOx60 films still kept good toughness with an elongation at break of 50.7%.  相似文献   

13.
Poly(styrene)‐poly(lactide) (PS‐PLA), poly (tert‐butyl styrene)‐poly(lactide) (PtBuS‐PLA) diblocks, and poly(tert‐butyl styrene)‐poly(styrene)‐poly(lactide) (PtBuS‐PS‐PLA) segmented and tapered triblocks of controlled segment lengths were synthesized using nitroxide‐mediated controlled radical polymerization. Well‐defined PLA‐functionalized macromediators derived from hydroxyl terminated TEMPO (PLAT) of various molecular weights mediated polymerizations of the styrenic monomers in bulk and in dimethylformamide (DMF) solution at 120–130°C. PS‐PLA and PtBuS‐PLA diblocks were characterized by narrow molecular weight distributions (polydispersity index (Mw/Mn) < 1.3) when using the PLAT mediator with the lowest number average molecular weight Mn= 6.1 kg/mol while broader molecular weight distributions were exhibited (Mw/Mn = 1.47‐1.65) when using higher molecular weight mediators (Mn = 7.4 kg/mol and 11.3 kg/mol). Segmented PtBuS‐PS‐PLA triblocks were initiated cleanly from PtBuS‐PLA diblocks although polymerizations were very rapid with PS segments ~ 5–10 kg/mol added within 3–10 min of polymerization at 130°C in 50 wt % DMF solution. Tapering from the PtBuS to the PS segment in semibatch mode at a lower temperature of 120°C and in 50 wt % DMF solution was effective in incorporating a short random segment of PtBuS‐ran‐PS while maintaining a relatively narrow monomodal molecular weight distribution (Mw/Mn ≈ 1.5). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
About 133.5 nm Radix salvia miltiorrhiza nanoparticles were prepared by high speed centrifugal sheering pulverizer and the nanoparticles were characterized by TEM in this study. Microcapsules containing R. salvia miltiorrhiza nanoparticles were produced by spray-drying technique using different proportions of gelatin and sodium salt of carboxymethylcellulose (CMC-Na) as wall materials. The effects of inlet temperature, flow rate, spray-gas flow and the ratio of Mcore/Mwall on encapsulation yield (EY) and encapsulation efficiency (EE) were investigated. The EE was determined by reverse high performance liquid chromatography (HPLC); the resulting microcapsules were characterized by FT-IR, SEM, and X-ray diffraction analysis. In addition, in vitro release characters of R. salvia miltiorrhiza raw powder, spray-dried powder and microcapsules were also studied. The results showed that spray-dried microcapsules had a regular spherical shape but the majority presented rough surfaces or invaginations with a diameter of 2-5 μm. R. salvia miltiorrhiza nanoparticles were embedded in the wall system consisting of gelatin and CMC-Na. Higher EE and EY were obtained under the inlet temperature of 80 °C and the ratio of Mcore/Mwall of 1/4. In vitro release study showed that R. salvia miltiorrhiza microcapsules could regulate drug release. This study may be helpful to the pharmaceutical application of R. salvia miltiorrhiza.  相似文献   

15.
Amorphous and crystallized poly(L -lactic acid) (PLLA) films were prepared and the hydrolytic degradation of the ultraviolet (UV)-treated and UV-nontreated films was investigated. This study reveals that the combination of UV and thermal treatments can produce the PLLA materials having different hydrolytic degradation profiles and that the UV-irradiation in the environment will affect the design of recycling process for PLLA articles. In an early stage, the degrees of hydrolytic degradation monitored by weight loss (Wloss), number-average molecular weight (M n), and melting temperature (T m) were higher for the UV-treated films than for the UV-nontreated films. In a late stage, the trend traced by Wloss was reversed, and the difference in the degrees of hydrolytic degradation between the UV-treated and UV-nontreated films monitored by M n and T m became smaller, with the exception of the degrees of hydrolytic degradation of the amorphous films traced by T m. Also, in the early stage, the degrees of hydrolytic degradation monitored by Wloss and M n were higher for the crystallized films than for the amorphous films. In the late stage, this trend was reversed, with the exception of the degrees of hydrolytic degradation of the UV-treated films monitored by M n. The main factors that determined the Wloss and T m were the molecular weight and initial crystallinty but not the molecular structures such as terminal CC double bonds and crosslinks. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Microcapsules based on a phase changing paraffin core and modified titanium dioxide–poly(methyl methacrylate‐co‐butyl acrylate) [P(MMA‐co‐BA)] hybrid shell were prepared via a Pickering emulsion method in this study. The microcapsules exhibit an irregularly spherical morphology with the size range of 3–24 µm. The addition of BA can enhance the toughness of the brittle polymer poly(methyl methacrylate) and improve the thermal reliability of the phase change microcapsules. The ratio of BA/MMA is in the range of 0.09–0.14, and the ratio of the monomer/paraffin is varied from 0.45 to 0.60. These microcapsules exhibit a well‐defined morphology and good thermal stability. The actual core content of the microcapsules reaches 36.09%, with an encapsulation efficiency of 73.07%. Furthermore, the prepared microcapsules present the high thermal reliability for latent‐heat storage and release after 2000 thermal cycles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46447.  相似文献   

17.
Novel poly(L ‐histidine)‐chitosan/alginate complex microcapsules were prepared from biodegradable polymers poly(L ‐histidine) (PLHis) in the presence of chitosan at acetate buffer solution pH 4.6. Microcapsules obtained are spherical and well‐dispersed with a smooth surface and a narrow size distribution. The microcapsules can encapsulate the protein model drug hemoglobin (Hb) efficiently. The results show that the complex microcapsules with low, medium, or high molecular weight of chitosan (0.05%, w/v), the highest encapsulation efficiencies obtained are 91.3%, 85.9%, and 94.2% with loading efficiencies of 47.8%, 44.3%, and 39.7%, respectively. The release profiles indicate that Hb‐loaded microcapsules conform to first‐order release kinetic in whole procedure, and 84.8%, 71.4%, and 87.3% of Hb were released during 72‐h incubation in PBS pH6.8 for microcapsules with low, medium, and high molecular weight chitosan (0.05%, w/v), respectively. The results also indicate that particle size and drug loading efficiency have a significant influence on the release profile and encapsulation efficiency. Our results reveal that the PLHis‐chitosan/alginate complex microcapsules are able to encapsulate and release Hb and are potential carriers for protein drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Microcapsules with urea–formaldehyde as the shell and linseed oil as the healing agent were synthesized by a previously reported procedure. Two kinds of synthesized microcapsules, without and with CeO2 nanoparticles, were separately added to the epoxy resin coatings. The epoxy coatings containing microcapsules were applied on carbon steel, and their self-healing effect was investigated in 0.5 M HCl solution. The amount of the released healing agent that filled up the scratch was estimated by scratch filling efficiency (SFE). The SFE values are only the theoretical estimates of the self-healing performance. The scratch sealing efficiency (SSE), which is a measure of corrosion protection performance of the damaged coating, can be measured by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques. For sake of an optimum self-healing system, two series of coatings, with and without nanoparticles, were prepared by using different microcapsule concentrations: 5, 10, 15 and 20 wt%. For comparison, a coating without microcapsules was also prepared. The coated samples with 5% microcapsule concentration, due to the low amount of released linseed oil, could not properly repair the artificial scratch. In contrast, when the microcapsule concentration was equal to or higher than 10% the volume of the released linseed oil was enough to seal the scratch. However, the coating sample containing 15% nanoparticle-loaded microcapsules was the optimum self-healing coating because it showed comparable SSE values to those of samples containing 20% microcapsule concentration in spite of its lower microcapsule concentration. The EN method was employed as a complementary quantitative technique to study the self-healing behavior of coatings. The calculation of the amount of noise charges using the standard deviation of partial signal (SDPS) plots arising from wavelet analysis made it possible to obtain the SSE values of the coatings. The good agreement between EIS and EN results indicates that the EN technique, as well as the EIS method, can be used successfully for the self-healing evaluation.  相似文献   

19.
Double‐shell microcapsules containing butyl stearate were prepared through interfacial polymerization. The outer shell is polyurea formed through polymerization of toluene‐2,4‐diisocyanate (TDI) and diethylene triamine, and the inner shell is polyurethane (PU) formed through polymerization of TDI and polypropylene glycol 2000 (PPG2000). Styrene maleic anhydride copolymer was used as emulsifier. The effects of core to monomer ratio and dosage of PPG2000 on core content and encapsulation efficiency of microcapsules were investigated. The core content has a maximum at core to monomer ratio of 3–4, and the encapsulation efficiency has a maximum value of 95% at core to monomer ratio of 2. The prepared microcapsules were smooth and compact and have an obvious latent heat of 85 J/g. The shell structure of microcapsules was polyurea and PU. The average diameter of the microcapsules was 1–5 μm. The stabilities of the double‐shell microcapsule, such as anti‐ethanol wash and antiheat properties are obviously improved than those of single‐shell microcapsule. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Based on the deficiency of traditional acidification or acid pressure technology in the development of carbonate oil and gas resources, a microcapsule which wraps hydrochloric acid and can be released through temperature control was prepared by using microcapsule technology. The microcapsules were prepared with polyurethane prepolymer (PUA) and 1,6-hexadiol diacrylate (HDDA) polymer as wall material and hydrochloric acid as core material by two emulsification and photocatalysis methods. Its parcel rate is 61.9%. Fourier transform infrared spectroscopy characterization confirmed the successful photopolymerization of PUA prepolymer and HDDA in a strong acid environment. The microscopic morphology analysis of electron microscope showed that the microcapsule was regular and uniform spherical with smooth and dense surface. The particle size analysis showed that the microcapsules were mainly distributed between 40 and 300 μm, and the average particle size was 114.02 μm.The glass temperature of microcapsule wall material was 97°C by DSC method. The release rate of microcapsules was accelerated with the increase of release temperature. The cumulative release rate of acid solution of microcapsules for 3 h reached 28.4%, and the final release rate of microcapsules for 12 h reached 90.7% under 100°C. In addition, the release of microcapsules is less affected by the formation salinity. At 90°C, the maximum release rate of 7.5 g/L CaCL2 was 49.1%, lower than that of 59.4% in pure water, showing the good salt resistance of the wall materials of microcapsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号