首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以葡萄糖为碳源物质制备出碳包覆白炭黑填料,通过改变葡萄糖在碳包覆白炭黑填料中的占比,研究不同碳含量对碳包覆填料/橡胶纳米复合材料性能的影响。研究表明,碳包覆白炭黑填料在橡胶中的分散性能及其填充胶加工性能都大幅提升,以葡萄糖为碳源的碳包覆填料硫化胶的耐磨性能相比纯白炭黑硫化胶提升 30%时的碳包覆白炭黑填料填充胶的物理机械性能最为优异。本文通过对碳包覆填料/橡胶纳米复合材料的性能分析及填料自身的微观表征,对填料中碳源物质与白炭黑的作用机理及对橡胶性能的影响进行了总结探讨。  相似文献   

2.
为拓展硅藻土在高分子复合材料中的应用,将硅藻土/白炭黑填充到天然橡胶/丁苯橡胶/顺丁橡胶中制备了复合材料。通过RPA2000和扫描电镜分析了复合填料的Payne效应和分散性,考察了硅藻土用量对复合材料工艺性能、力学性能、耐磨耗性能影响。结果表明:少量硅藻土的加入有利于白炭黑在橡胶中的分散,能降低复合材料的门尼粘度和Payne效应,提高复合材料的硫化速度,缩短硫化时间,复合填料的补强效果较好;随着硅藻土用量的增加,复合填料容易聚集,其力学性能呈下降趋势,而磨耗性能变化不大;当硅藻土用量10~20份时,复合材料的综合性能最好。  相似文献   

3.
Nanocomposite powders from polypropylene filled with surface modified and unmodified fumed silica have been prepared from polymer solution to achieve improved mixing and have been forwarded to fiber melt spinning. The surface of the fumed silica was modified with dodecyl alkoxy silanes. Crystallization velocity and viscosity of the PP nanocomposites thereof were determined to ensure good melt spinning processing conditions for all composite compositions. Upon addition of untreated filler particles, a shear thinning and an increased crystallization velocity of the polymer melt was found, while only minor changes were detected in the presence of surface modified fumed silica particles. The composites and the polymer fibers made from these powder composites by melt spinning were mainly characterized by optical microscopy (OM), scanning electron microscopy (SEM), mechanical measurements, differential scanning calorimetry (DSC), and solid‐state NMR. The unmodified fumed silica was found to have a strong influence on the mechanical fiber properties, while the surface modified silica only a small one. Fibers were additionally characterized with respect to the uniformity, the PP crystallinity, moisture absorption, and the water contact angle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 218–227, 2007  相似文献   

4.
S. Patel 《Polymer》2005,46(19):8079-8090
Acrylic copolymers/terpolymers with different comonomer contents were prepared by solution polymerization. Copolymers/terpolymers-silica hybrid composites were synthesized by acid catalyzed sol-gel technique using tetraethoxysilane (TEOS) as silica precursor. Microstructure of the copolymers and the terpolymers was analyzed by C13 nuclear magnetic resonance and Fourier transform infrared (FTIR) spectroscopy. The hybrid composites were characterized by scanning electron microscopy (SEM), FTIR, thermogravimetry, dynamic mechanical thermal analysis (DMTA) and their mechanical properties. The results showed that an increase in hydrophilicity of the polymer matrix and the ratio of ethyl to butyl acrylate, and incorporation of acrylic acid as termonomer helped in finer dispersion of silica and prevented macrophase separation. There was no evidence of chemical interaction between the polymer and the dispersed silica phase. Dynamic mechanical thermal analysis indicated mechanical reinforcement within the hybrid composites. As a result, these composites demonstrated superior tensile strength and tensile modulus with increasing proportion of TEOS up to a certain level. At a particular TEOS concentration, the tensile properties improved with increasing hydrophilicity of the polymer matrix and acrylic acid modification. The mechanism for improvement in mechanical and dynamic mechanical properties of the hybrids was discussed.  相似文献   

5.
Mesoporous silica nanoparticles (MCM‐41) with an average diameter of ~ 20 nm were synthesized by a sol‐gel method using binary surfactant system. Polystyrene (PS) composites containing mesoporous silica nanoparticles were prepared by in situ polymerization of styrene monomers. Similar in situ polymerized PS composites were prepared based on the modified silica functionalized with methyl and vinyl groups. The effects of silylation on thermal and rheological properties of the PS/silica composites are investigated. Of particular importance is that the in situ polymerization of monomers within the mesoporous silica may trap some polymer chains, if not all, thereby affording a greater physical interaction between polymer and the porous fillers, whereas the chemical modification of silica surface promotes the polymer–filler interaction, which in turn enhances the thermal stability of composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Polyacrylamide (PAAM) nano silica inclusions composites were prepared having different ratios of nano silica. The silica inclusions were either modified or unmodified. The nanocomposite films were characterized by transmission electron microscope (TEM) and infrared spectroscopy (IR). The dielectric behavior of the composites had been investigated as a function of the concentration of the nano silica inclusions.

The results show that the dielectric constant and dielectric loss of the nanocomposites are smaller than those obtained for the neat polymer. As the concentration of the surface-modified nano silica inclusions increases, the dielectric constant decreases. This behavior may be attributed to the successful interaction between the polymer and the surface of the nano silica inclusions. As would be expected, the results thus obtained are a clear manifestation of the role of surface treatment of the filler inclusions and subsequently the role played by the interface on the properties of the composites.  相似文献   

7.
Polypropylene‐based composites were prepared by melt blending with nano‐silica, which was pre‐treated by grafting polymerization onto the surface. Tensile moduli and strengths of the composites were determined as a function of the nano‐silica content and the amount of the grafting polymers chemically attached to the nanoparticles, ie percentage grafting. To analyse the relationships between the interfacial interactions in the composites and tensile performance, a number of models dealing with the static and dynamic mechanical behaviours of the particulate composites were applied. It was found that stronger interfacial interactions exist in the grafted nano‐silica‐filled polypropylene composites as compared to the composites with untreated nano‐silica. Since the interfacial interactions occur only within a very short range, the greatest interaction between the modified nanoparticles and the matrix is achieved in the case of low silica concentration and low percentage grafting. An increase in the percentage grafting for various grafted nanoparticles definitely results in an increase of interphase thickness, but the interfacial interactions and the tensile performance of the composites are not necessarily improved because the agglomeration structure of the nanoparticles and the miscibility between the components play the leading role. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
ABSTRACT

Thermally stable nanocomposites from polyimide (PI) and silica have been prepared through the sol-gel process. PI matrix, prepared by the reaction of a mixture of phenylenediamine and oxydianiline with an equimolar amount of pyromellitic dianhydride, acted as a reference. The polymer matrix was modified by replacing phenylenediamine with 2,4-diaminophenol to include pendant hydroxyl groups on the chain. Composite films were prepared using different amounts of silica generated in-situ in both type of matrices. These were evaluated by a variety of techniques, including FTIR, SEM, tensile, dynamic mechanical, thermal, and thermogravimetric analyses. The presence of hydroxyl group on polymer chain caused an intimate dispersion of the two phases, which resulted in the formation of nano-sized co-continuous domains as compared to that of the corresponding PI system having no pendent hydroxyl groups. The mechanical and thermal properties of these composites have been compared and explained in term of increased matrix polarity.  相似文献   

9.
BACKGROUND: The reinforcement of elastomers by the addition of fillers is one of the most important aspects in rubber science and technology. In order to optimise the filler–polymer interface, innovative in situ generation of silica within isoprene rubber was carried out by means of a bottom‐up approach through a sol–gel process starting from tetraethoxysilane as silica precursor. The main aim was the study of the effect of the silica concentration and of the presence of coupling agent on the morphology and the dynamic mechanical behaviour of the composites. RESULTS: The in situ generated silica particles were homogeneously dispersed in the vulcanised rubber with dimensions from a few nanometres to the submicrometre scale. In the presence of coupling agent a good polymer–filler adhesion was observed. The dynamic mechanical behaviour was nonlinear for silica contents higher than 20 wt%. In this range of compositions silica exerted a marked reinforcement on the low‐amplitude storage modulus, which is related to the silica content according to the Huber–Vilgis model. CONCLUSION: Isoprene rubber can be effectively reinforced by the in situ generation of silica for silica contents higher than 20 wt%, and the interaction at the silica–rubber interface can be optimised by using suitable coupling agents. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能   总被引:5,自引:0,他引:5  
将陶瓷纤维与氧化硅溶胶复合经超临界干燥得到陶瓷纤维增强氧化硅气凝胶隔热复合材料.研究了陶瓷纤维体积分数以及气凝胶密度对材料力学性能的影响,分析了纤维对气凝胶隔热复合材料的增强机制.结果表明:纤维与气凝胶复合后,气凝胶充分填充纤维之间的空隙,复合材料力学性能得到显著改善.气凝胶隔热复合材料的力学性能随纤维体积分数的增大先增后减,随气凝胶密度的增大则逐渐增大.当纤维体积分数为7.6%,气凝胶密度为0.202g/cm3时,材料抗拉强度、抗弯强度分别为1.44,1.31 MPa,抗压强度可达0.59MPa(10%形变)、1.28MPa(25%变).  相似文献   

11.
The compatibility between polymer matrix and filler is a vital issue in the fabrication of composites with desirable properties. To enhance the interfacial adhesion between matrix and filler, various surface modification treatments are applied. The objective of this study was to increase the affinity of silica and poly(urethane-urea)s (PUUs), thereby improving the mechanical properties of the resulting composites. Stepwise surface modification of mesoporous silica with amine-containing dendrimers was done. Various techniques were used to confirm the surface-modified structure during the stepwise reaction. Additionally, the N2 adsorption–desorption method indicated a gradual reduction in surface area, pore diameter and pore volume of the particles, which warrants the gradual propagation of the dendrimers on the surface and also inside the pores. A type IV isotherm was obtained in this analysis. Two types of pre-synthesized PUUs were chosen for composite preparation containing the surface-modified silica with 0.5, 1, 2.5 and 5 wt% concentrations. Due to the high affinity of the dendrimers containing amine moieties on the particles with polyurethane, a proper dispersion of particles in the matrix was achieved based on scanning electron micrographs. Tensile measurements showed an increased Young's modulus and strength of polyurethane films as a result of addition of the particles. However, no significant improvement in the tensile performance of the composites was seen above 2.5 wt% particle loading due to some particle aggregations. © 2021 Society of Industrial Chemistry.  相似文献   

12.
Silane treatment has been applied to the preparation of nylon 6/nano‐SiO2 composites through in situ polymerization. The influence of such treatment on the reactivity of silica, polymerization of nylon 6, and the mechanical properties of the achieved composites has been studied. Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA) of silicas isolated from the composites have shown that the conversion of surface silanol groups to amino and epoxy groups did not cause a significant change in the reactivity of silica and that the percentage of silica surface grafting was around 15% for all treated and untreated silicas. End group analysis has shown that the presence of silica (pretreated or not) in the composite system resulted in the decrease of the average molecular weight of the polymer matrix. However, dynamic mechanical analysis and mechanical tests revealed that treating silica with silane improved the strength and toughness of the composite materials, while untreated silica improved their strength at the expense of toughness. This can be attributed to the existence of the flexible interlayer introduced by silane treatment. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 827–834, 2002; DOI 10.1002/app.10349  相似文献   

13.
硅胶/分子筛复合物的制备及吸附性能   总被引:2,自引:0,他引:2  
以硅溶胶为分散剂和粘合剂,在陶瓷纤维纸上浸渍反应生成了高性能的硅胶与分子筛复合物.讨论了硅溶胶浓度、分子筛含量等对复合物吸附性能的影响.光学显微照片显示:分子筛能较好地分散在硅溶胶中.扫描电镜照片显示:分子筛颗粒较均匀地分散在陶瓷纤维纸的表面及空隙中.静态法吸附性能测试结果显示:低湿度下,硅胶/分子筛复合物的吸附性能优于硅胶的;高湿度下,硅胶/分子筛复合物的吸附性能优于分子筛的.  相似文献   

14.
用溶胶—凝胶法原位生成SiO2增强橡胶   总被引:4,自引:0,他引:4  
介绍了用溶胶-产法原位生成SiO2纳米粒子增强橡胶的技术,以及该技术的3种不同方法:(1)在硫化胶中生成原位SiO2;(2)在非硫化胶中生成原位SiO2;(3)在硫化反应中生成原位SiO2。同时对溶胶-凝胶技术的反应原理和影响因素作的探讨。总结了原位SiO2增强橡胶复合材料的结构特征(粒径及其分布、分散性、界面状态)主由此导致的物理机械性能。分析了这种技术的优缺点及其在橡胶工业中的应用前景。  相似文献   

15.
The mechanical, morphological behavior and water absorption characteristics of polypropylene (PP) and silica, or PP and rice‐husk, composites have been studied. The silica used in this study as filler was a commercial type produced from soluble glass or rice husks. The compatibilizing effect of PP grafted with monomethyl itaconate (PP‐g‐MMI) and/or with vinyltriethoxysilane (PP‐g‐VTES) as polar monomers on the mechanical properties and water absorption was also investigated. In general, a high loading of the studied fillers in the polymer matrix increases the stiffness and the water absorption capacity. This effect is more noticeable in the tensile modulus of the PP/silica composite with PP‐g‐VTES as compatibilizer. However, the increase of the rice‐husk charge as a natural filler in the PP matrix decreases the stiffness, and in the presence of PP‐g‐MMI as compatibilizer in PP/rice‐husk, the tensile modulus and water absorption of the composite were improved. The better adhesion and phase continuity in the PP/silica and PP/rice‐husk composites with different compatibilizers was confirmed by the morphological study. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The spherical silica powders were prepared by using an oxygen–acetylene flame method. After spheroidization, a scanning electron microscope investigation revealed that the spheroidization efficiency of the powder was nearly 100%, XRD patterns indicated that the raw crystal silica became amorphous silica. In this study, composites of spherical silica and an epoxy resin were prepared with a homogenizer, followed by a stepwise thermal curing process. The thermal stability and thermal degradation behavior of the composites were studied by a thermogravimetric analyzer. Meanwhile, the effects of spherical silica powder on dynamic mechanical, coefficient of thermal expansion, and mechanical properties of epoxy/silica composites were also investigated. The initial decomposition temperature and mechanical properties increased significantly after adding the spherical silica into the composite. The maximum properties of thermal stability and mechanical properties were observed when spherical silica accounted for 30% of the system. The thermal expansion had been significantly reduced by the addition of silica. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
二氧化硅气凝胶具有高孔隙率、低热导率等特点,使其成为新型超级隔热材料。然而,二氧化硅气凝胶的柔韧性、整体性差,并且常温干燥制备的气凝胶在高温时热导率迅速上升,这些都大大限制了二氧化硅气凝胶的应用。近些年,通过原位溶胶-凝胶法和模压成型法制备得到的二氧化硅气凝胶复合隔热材料,在一定程度上提高了其韧性、整体性和高温隔热性能,使得二氧化硅气凝胶作为单独块体隔热材料成为可能。本文阐述了二氧化硅气凝胶隔热材料的隔热机理,综述了近年来抗辐射型、纤维增强型和聚合物增强型二氧化硅气凝胶复合隔热材料的研究现状,最后讨论了该领域今后研究趋势。  相似文献   

18.
Fa-Ai Zhang  Dong-Keun Lee 《Polymer》2009,50(20):4768-9934
PMMA-mesoporous silica nanocomposites were prepared for the first time through in situ batch emulsion polymerization of methyl methacrylate in the presence of large pore MSU-F silica with a mesocellular foam structure (24.8 nm average cavity size) and subsequent compression molding of the polymer-silica nanoparticle mixtures. For composites containing 5.0 wt % silica, the onset decomposition temperature and the temperature at 10% weight loss for the nanocomposite increased 41 °C and 50 °C, respectively, in comparison to pure PMMA. The glass transition temperature of the nanocomposite increased 9.3 °C, as determined by differential scanning calorimetry. In addition, the storage modulus determined by dynamic mechanical analysis increased 17% and 80% at 50 °C and 100 °C, respectively. Substantial improvements in tensile strength (+50%) and modulus (+72%), were achieve at 10 wt % nanoparticle loading. Composites made by compression molding of physical mixtures of PMMA and MSU-F silica powders provide less improvement in thermal stability, glass transition temperature and mechanical properties in comparison to the composites made through in situ batch emulsion polymerization. Unlike previously reported composites made from nanoclays, the silica composites reported here show improvements in both thermal stability and mechanical reinforcement.  相似文献   

19.
Nanoscale silica was synthesized by acid hydrolysis of sodium silicate using dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by SEM, BET adsorption, and XRD. The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. This synthesized nanosilica was used in place of conventional silica in HRH (hexamethylenetetramine, resorcinol and silica) bonding system for natural rubber/Nylon‐6 short fiber composite. Nanosilica was also used as reinforcing filler in natural rubber/Nylon‐6 short fiber hybrid composite. Mechanical, thermal, and dynamic mechanical properties of the composites were evaluated. The introduction of the nanosilica in hybrid composites improved the tensile strength, modulus, and tear strength through improved interaction with the matrix which is facilitated by the higher surface area. Abrasion loss and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. The hybrid composites showed anisotropy in mechanical properties. Peak rate of thermal decomposition decreased and temperature of initiation of thermal degradation increased with silica content, indicating improved thermal stability of the hybrid composites. The storage modulus and loss modulus showed two‐stage dependence on frequency at higher fiber loading. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Silica gels that controlled the pore size were prepared by calcination of silica/organic polymer (50/50 wt %) composites prepared by the sol-gel process. Poly(ethylene oxide) (PEO)-poly(propyrene oxide) (PPO)-PEO triblock copolymers, which are called poloxamers, were used as an organic polymer. The pore control of the silica gels was carried out by changing the molecular weight of PEO or PPO in the poloxamers. The silica gels obtained by the above procedure had a dual pore size of around 4 nm and below 2 nm in diameter, and the specific surface area was 500–1000 m2/g. The poloxamer molecules were supposed to be dispersed monomolecularly in the composites. Therefore, the pore structure of the silica gels reflected the structure of the poloxamer and, particularly, the radius of gyration of PPO in the composites. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 763–768, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号