首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical and fracture properties of injection molded short glass fiber)/short carbon fiber reinforced polyamide 6 (PA 6) hybrid composites were studied. The short fiber composites of PA 6 glass fiber, carbon fiber, and the hybrid blend were injection molded using a conventional machine whereas the two types of sandwich skin–core hybrids were coinjection molded. The fiber volume fraction for all formulations was fixed at 0.07. The overall composite density, volume, and weight fraction for each formulation was calculated after composite pyrolysis in a furnace at 600°C under nitrogen atmosphere. The tensile, flexural, and single‐edge notch‐bending tests were performed on all formulations. Microstructural characterizations involved the determination of thermal properties, skin–core thickness, and fiber length distributions. The carbon fiber/PA 6 (CF/PA 6) formulation exhibits the highest values for most tests. The sandwich skin‐core hybrid composites exhibit values lower than the CF/PA 6 and hybrid composite blends for the mechanical and fracture tests. The behaviors of all composite formulations are explained in terms of mechanical and fracture properties and its proportion to the composite strength, fiber orientation, interfacial bonding between fibers and matrix, nucleating ability of carbon fibers, and the effects of the skin and core structures. Failure mechanisms of both the matrix and the composites, assessed by fractographic studies in a scanning electron microscope, are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 957–967, 2005  相似文献   

2.
In this study, a carbon fiber/vinyl ester-polyurethane interpenetrating polymer network (IPN) laminate composite was fabricated and characterized for the first time. The IPN matrix, consisting of a commercially available vinyl ester and polyurethane, was synthesized via a sequential method with vinyl ester as the rigid phase and polyurethane as the flexible phase. Good compatibility between the two phases in the matrix was achieved and confirmed via differential scanning calorimetry and dynamic mechanical analysis. The thermomechanical response of the IPN matrix was compared with that of an unmodified vinyl ester resin. The presence of the more ductile polyurethane in the IPN matrix depressed the glass transition temperature (from 94 to 84°C), but also served to improve damping response at all frequencies studied. Tensile and flexural tests were performed on the carbon fiber/IPN and carbon fiber/vinyl ester composites to determine their mechanical response. The IPN composite exhibited lower tensile properties than the vinyl ester composite. However, its flexural properties were on par with those of the vinyl ester composite.  相似文献   

3.
This article presents the low‐velocity impact response of fiber metal laminates, based on aluminum with a polymer composite, reinforced with carbon and glass fibers. The influence of fiber orientations as well as analysis of load‐time history, damage area and damage depth in relation to different energy levels is presented and discussed. The obtained results made it possible to determine characteristic points, which may be responsible for particular stages of the laminate structure degradation process: local microcracks and delaminations, leading to a decrease in the stiffness of the laminate, as well as further damage represented by laminate cracks and its perforation. The damage mechanism of fiber metal laminates is rather complex. In case of carbon fiber laminates, a higher tendency to perforation was observed in comparison to laminates containing glass fibers. Delaminations in composite interlayers and at the metal/composite interface constitute a significant damage form of fiber metal laminates resulting from dynamic loads. Fiber metal laminates with glass fibers absorb energy mainly through plastic deformation as well as through delamination initiation and propagation, whereas laminates containing carbon fibers absorb energy for penetration and perforation of the laminate. POLYM. COMPOS. 37:1056–1063, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

5.
The energy absorption capability of a composite material is important in developing improved human safety in an automotive crash. In passenger vehicles, the ability to absorb impact energy and be survivable for the occupant is called the crashworthiness of the structure. The crashworthiness in terms of the specific energy absorption (SEA) of a chopped carbon fiber (CCF) composite material system was compared with that of other fiber resin systems such as graphite/epoxy cross‐ply laminates (CP#1 and CP#2), a graphite/epoxy‐braided material system (O), and a glass‐reinforced continuous‐strand mat (CSM). The quantity of these material systems needed to ensure passenger safety in a midsize car traveling at various velocities was calculated and compared. The SEA of the chopped carbon fiber composite material was the highest compared to that of all the other composites investigated. It was calculated that only 4.27 kg of it would need to be placed at specific places in the car to ensure passenger safety in the event of a crash at 15.5 m/s (35 mph). This clearly led to an important practical conclusion that only a reasonable amount of this composite material is required to meet the necessary impact performance standard. The CCF composite tested at 5 mm/min crushing speed met both the criteria that need to be satisfied before a material is deemed highly crashworthy: A high magnitude of energy absorption and a safe allowable rate of this energy absorption. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3218–3225, 2004  相似文献   

6.
Design of automotive components with over-molded short/continuous fiber reinforced thermoplastic composites necessitates understanding of their behavior under extreme outdoor conditions. The short, quasi-isotropic and over-molded short/continuous glass fiber reinforced polypropylene (PP) composite specimens were prepared as per standard and immersed in water until equilibration to study their relative moisture absorption characteristics and consequent mechanical behavior. As the absorbed moisture mostly occupied the interface between fiber and matrix in laminated composite inserts and moisture absorption of short fiber composite core is insignificant, the moisture absorption of over-molded composites is just above 50% of that of laminated composites. The flexural, interlaminar shear and impact behavior of equilibrated composites is primarily governed by the quantum of imbibed moisture of composite materials. Optical analysis of failed moisture equilibrated over-molded specimens showed a marginal delamination between plies of the inserts without any perceptible damage within the short fiber composite similar to dry as molded specimens.  相似文献   

7.
The study aims at investigating the mechanical behavior of carbon fiber reinforced polymer (CFRP) composites modified with graphene carboxyl at elevated temperature (ET-110°C) and understanding the effect of electrophoretic deposition bath concentration (0.5 g/L, 1.0 g/L, and 1.5 g/L) on their mechanical behavior at ET. The 1.5 g/L composite has revealed a maximum improvement in energy absorbed before failure of 33.25% at RT and 22.54% at ET for flexural testing and ∼35% at RT for short beam shear testing, over neat CFRP composite. The modified composites have shown an improved flexural strain to failure at both RT and ET, with 1.5 g/L composite exhibiting maximum enhancement of 12.41% at RT and 26.52% at ET over neat composite. However, at ET, modified composites exhibited lower flexural strength and interlaminar shear strength values in comparison to that of neat. Viscoelastic behavior of all composites was studied to understand bath concentration's effect on thermal behavior via dynamic mechanical thermal analysis. Differential scanning calorimetry was employed for governing the glass transition temperature of composites. Fractography of tested samples (both ET and RT) was performed utilizing a scanning electron microscope to determine the prominent failure mode.  相似文献   

8.
Tribological behavior of short fiber-reinforced thermoplastic composites was investigated experimentally and theoretically. Short carbon fiber and glass fiber reinforced poly(amide-imide) composites were tested. Titanium oxide powder-filled composite was also tested for comparison with the fiber composites. Block-on-ring type wear testing was performed for 24 h at three different sliding conditions. Frictional force was measured and stored by a data acquisition system and wear was measured as weight loss after the test. Wear tracks on the specimen and the counterface were examined with an optical microscope to observe fiber damage and formation of wear film. The equivalent stress distribution around each fiber at the sliding surface was calculated by employing a finite element program. The lowest friction and wear was obtained for the carbon fiber composite, the highest friction for the glass fiber composite, and the highest wear for TiO2-filled one. It was observed that the glass fibers are damaged and removed from the surface more easily than the carbon fibers, and the finite element analysis also suggests easier debonding of glass fibers.  相似文献   

9.
This article is focused to elucidate the critical influence of diffusion temperature on the water uptake and subsequent degradation behavior of multi‐walled carbon nanotube embedded glass fiber/epoxy (MWCNT‐GE) composite. Presence of MWCNT in the glass fiber/epoxy (GE) composite significantly suppressed its water absorption propensity at lower aging temperature (25 °C). However, MWCNT reinforcement in GE composite adversely affected its high temperature water resistance due to generation of unfavorable thermal and hygroscopic stresses at the MWCNT/polymer interfaces. Effect of MWCNT and water diffusion temperature on the glass transition temperature and chemical bonding characteristics of GE composite have been verified by differential scanning calorimetry and Fourier transformed infrared spectroscopy. Flexural testing of the water saturated samples revealed that diffused water exerts more detrimental effect on mechanical performance of MWCNT‐GE composite than that of control GE composite. The extent of recovery in mechanical performance of the composites has also been evaluated after complete desorption of the water saturated samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45987.  相似文献   

10.
短切碳纤维/铁氧体填充的复合材料对8mm波吸收性能研究   总被引:3,自引:0,他引:3  
本文使用溶胶凝胶法制备了一种M型掺杂六角铁氧体,研究了该铁氧体、短切碳纤维及玻璃纤维制成的单层和双层复合材料在8mm波段(26.5~40GHz)的吸收性能.结果表明,铁氧体和短切碳纤维混合填充的复合材料在该波段反射率均在-10dB以下;而以玻璃纤维复合材料作为面层的双层结构吸波材料在该波段的吸收效果更好,-20dB以下的带宽达到2.7 GHz.  相似文献   

11.
为研究玻璃纤维(G)铺层的位置对碳纤维(C)复合板冲击损伤程度的影响,分别在15 J和25 J冲击能量的条件下,采用落锤式冲击试验机对[CC]2s、[CCCG]s、[GCCC]s、[CCGC]s 4种复合材料分别进行冲击实验,得出接触力、能量和位移分别随着时间变化的曲线;然后采用水浸式超声波C扫系统对冲击后的复合板进行...  相似文献   

12.
Polyvinyl alcohol–carbon nanotube (PVA–CNT) fibers differing on their pre-stretching condition were embedded in glass fiber reinforced plastic (GFRP) composites and used as strain sensors for damage monitoring of the composite. Strain sensing of the composite was made by the in situ measurement of the embedded fiber’s electrical resistance change during the mechanical tests. Four glass fiber composite plates were manufactured; each one had embedded a different type of produced PVA–CNT fibers. The multi-functional materials were tested in monotonic tensile tests as well as in progressive damage accumulation tests. The electrical resistance readings of the PVA–CNT fibers were correlated with axial strain values, taking into account the induced damage of the composite. It has been demonstrated that increasing the fiber’s pre-stretching ratio, its electrical resistance response increases due to higher degree of the CNTs alignment in the PVA matrix. Higher fiber pre-stretching degree enables the better strain monitoring of the composite due to higher measured electrical resistance change values noticed for the same applied axial strain values. To this end, it enables for the better monitoring of the progressive damage accumulation inside the composite.  相似文献   

13.
承载/声隐身混杂纤维复合材料的研究   总被引:2,自引:0,他引:2  
通过试验获取了碳纤维(CF)、凯夫拉纤维(KF)、玻璃纤维(GF)、超高分子量聚乙烯纤维(UHMPEF)复合材料的力学性能和声学性能参数,在此基础上分别利用等效刚度法和传递矩阵法,对CF/UHMPEF、CF/KF、CF/GF混杂纤维复合材料的拉伸刚度、声反射系数和声透射系数进行计算。结果表明,材料的刚度和强度基本相同的条件下CF/UHMPEF复合材料声压反射系数最小,其次是CF/KF复合材料,再次是CF/GF复合材料。10kHz频率范围内3种混杂材料的声透射系数都达到95%以上。  相似文献   

14.
纤维增强环氧树脂基复合材料的研究进展   总被引:2,自引:0,他引:2  
综述了纤维增强环氧树脂基复合材料的应用及研究进展,其中包括玻璃纤维(GF)增强、碳纤维(CF)增强,芳纶纤维,混杂纤维及植物纤维增强等。  相似文献   

15.
Limin Gao  Erik T. Thostenson 《Carbon》2010,48(13):3788-3397
The efficiency of damage sensing in fiber composites with uniformly and non-uniformly dispersed carbon nanotubes has been compared in this study. A highly uniform dispersion of carbon nanotube in fiber composites was achieved through the three-roll-mill technique while a non-uniform dispersion of carbon nanotubes was obtained using a nanotube-containing fiber sizing agent. Both techniques are effective in creating electrically conductive network for damage sensing in fiber composites. The sizing agent/glass fiber composite shows much lower resistance change than that of the composites fabricated by three-roll-mill technique. Advantages of the sizing agent approach in composites fabrication have also been examined.  相似文献   

16.
Damage development in plates of a glass fiber-reinforced polypropylene is recorded, using short pulse photography, during instrumented falling weight tests using the excess energy approach. It is seen that the damage is progressive throughout the test but its initiation cannot be detected either by freeze-frame photography or visual observation. Specimens are therefore subjected to low-energy impact followed by microscopic observation of the tensile face. It is found that the initial damage mechanism is cracking of the matrix at the fiber-matrix interface, the crack propagating along the fiber. The finite element method is used to estimate the stress distributions at damage initiation in 4-ply and 8-ply samples cut from unidirectional and cross-ply plaques. The computed results indicate that initial damage occurs when the transverse tensile stress reaches a critical value.  相似文献   

17.
This research work investigates the tensile strength and elastic modulus of the alumina nanoparticles, glass fiber, and carbon fiber reinforced epoxy composites. The first type composites were made by adding 1–5 wt % (in the interval of 1%) of alumina to the epoxy matrix, whereas the second and third categories of composites were made by adding 1–5 wt % short glass, carbon fibers to the matrix. A fourth type of composite has also been synthesized by incorporating both alumina particles (2 wt %) and fibers to the epoxy. Results showed that the longitudinal modulus has significantly improved because of the filler additions. Both tensile strength and modulus are further better for hybrid composites consisting both alumina particles and glass fibers or carbon fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39749.  相似文献   

18.
In this study, glass fiber composite prepreg is manufactured with multi‐walled carbon nanotube (MWNT) added epoxy using two different methods. Because MWNT agglomeration occurs, the calendering dispersion method is used to resolve this problem. The tensile and shear tests of glass/MWNT 1.8wt % added epoxy composite (CNT18) are conducted and the results are compared with the properties of a commercial glass/epoxy composite (GEP 118). The complex permittivity is measured using a network analyzer and a waveguide in the Ku‐band. A single slab radar absorbing structure (RAS) is also designed and verified. It is found that the tensile and shear properties of CNT18 are sufficient to replace GEP 118 as a structural material. Furthermore, the—10 dB bandwidth and reflection loss of the RAS using CNT18 is 12.87 to 17.78 GHz (4.91 GHz) and—29.2 dB at 14.95 GHz, respectively. The measurement results align well with the simulation results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42019.  相似文献   

19.
This article presents the experimental findings of tension-tension stress-controlled fatigue tests performed on low-density sheet molding compound (LD-SMC). LD-SMC composite is a type of SMC including a polyester resin reinforced with chopped glass fibers bundles and hollow glass spheres. The coupled frequency-amplitude affects the nature of the overall fatigue response, which can be controlled by the damage mechanisms accumulation and/or by the self-heating. In fact, the self-heating produced a material softening and decreased the fatigue lifetime. For fatigue loading at 80 Hz, self-heating has been observed and yielded to a temperature rise to 65°C, which is more than a glass transition temperature of polyester. Thus, the polyester matrix is subjected to remarkable thermally activated modifications of its physical state. Multiscale damage analysis of the randomly-oriented sample in fatigue showed that the first observed damage phenomenon corresponds to the debonding of the hollow glass microspheres occurring in the fiber depleted zones.  相似文献   

20.
This paper investigates the tensile response of damaged glass/epoxy composite laminates repaired using hybrid external patches. Hybrid external patches based on glass and Kevlar woven fabrics bonded on both faces of the damaged parent laminate were considered. Five different kinds of plain weave woven fabrics with a different ratio between glass and Kevlar fibers (100/0, 75/25, 50/50, 25/75 and 0/100) were used as the external patches. The intention of using these hybrid patches was to combine the excellent tensile stiffness of Kevlar fiber with the superior resin adhesion property of glass fiber. The virgin and damaged specimens were taken as the reference specimens for comparison of residual mechanical properties and damage mechanisms. Damage evolution and the failure progression of the repaired glass/epoxy specimens were monitored using real-time Acoustic Emission (AE) monitoring technique. The Acoustic Emission (AE) results depict different damage profiles and link them with mechanical test results to reveal the load to a change in failure mechanisms during mechanical loading concerning the influence of each hybrid patches on the performance of repaired glass/epoxy specimens. Good correlation of the acoustic emission results with the photographic images of fractured specimens was obtained. Specimens repaired with the equal volume fraction of glass and Kevlar fibers in the external patches presented the most favorable residual tensile response by effectively releasing the stress concentration in the damaged area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号