首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Numerical simulation on interaction between TIG welding arc and weld pool   总被引:3,自引:0,他引:3  
The interface deformation between welding arc and weld pool is important in dynamic coupling numerical simulation on arc and pool. To reveal the interaction between welding arc and weld pool, unified mathematic model of TIG welding arc and pool was established in this paper. The moving interface was solved by updating the calculation region of arc and weld pool continually. Fluid flow and heat transfer of TIG welding arc and weld pool were analyzed basing on this model. The weld pool shape calculated by dynamic coupling welding arc and pool is more close to the experiment than that of non coupling calculation.  相似文献   

2.
利用流体力学理论和变分法原理,根据熔池本身重力、电弧压力和表面张力之间的动态平衡,推导出了 TIG 焊接熔池表面变形的计算公式。建立了熔池表面存在变形的流场与热场的数学模型。采用 SIMPLER 方法对不锈钢试件焊接熔池内的流场与热场进行了数值分析。焊接工艺试验表明,该模型计算的熔池成形与实验值吻合良好。  相似文献   

3.
目的 研究等离子弧焊接穿孔过程中熔池内部的金属流动情况和小孔动态变化过程。方法 通过“传热-熔池流动-小孔”之间的相互耦合关系,建立了等离子弧焊接穿孔过程的数值分析模型,通过VOF方法追踪了小孔界面,采用FLOW-3D软件模拟了等离子弧焊接熔池和小孔的形成过程,定量计算了等离子弧焊接温度场、熔池流场及小孔形状;分析了等离子弧焊接熔池和小孔行为;并通过等离子弧焊接实验数据验证了模拟结果。结果 当焊接时间为0~1.0 s时,小孔深度曲线与熔深曲线几乎相同,小孔底部紧贴熔池底部;在2.8 s以后,小孔深度曲线与熔深曲线有一定距离,小孔深度曲线在一定范围内波动,等离子弧焊接电弧挖掘作用到达极限,电弧压力与其他力达到平衡状态。模拟的焊缝熔深为8.04 mm、熔宽为13.20 mm,实验测得的焊缝熔深为8.00 mm、熔宽为13.42 mm。结论 构建的随小孔动态变化的曲面热源模型和电弧压力模型可以描述等离子弧焊接过程中的电弧热-力分布;模拟出了等离子弧焊接熔池和小孔动态演变过程;模拟得到的等离子弧焊接焊缝形貌与实验测得的焊缝形貌基本吻合。  相似文献   

4.
为实现对工业废弃物粉煤灰的剩余价值利用,尝试以粉煤灰作为主要原料制备焊接复合活性剂,并在AZ91镁合金板上进行A-TIG焊.利用焊缝的电特性实时采集、焊接温度场采集、电弧力测试等手段研究活性剂对电弧影响,通过熔池Bi粒子示踪实验探究活性剂对表面张力温度梯度影响.结果 表明:与常规TIG焊相比,粉煤灰复合活性剂可以使焊缝熔深增深1.4倍,熔宽减小,深宽比是常规TIG焊的1.43倍.粉煤灰复合活性剂中氟化物的解离和电离吸热过程、带电粒子的电子扩散和复合过程可以促进电弧收缩,使焊接电压升高,热输入量提高.而活性剂中的氧化物既可以通过对电弧的机械压缩作用强迫电弧收缩,又可以通过电离产生的氧元素实现对熔池液态金属表面张力温度梯度系数的改变,提高熔池中心热输入.A-TIG焊AZ91镁合金熔深增加是电弧收缩理论和表面张力温度梯度改变理论共同作用的结果.  相似文献   

5.
目的 研究钨极惰性气体保护焊(TIG)和搅拌摩擦焊(FSW)对2219铝合金焊接接头疲劳性能的影响,并探究这2种不同焊接技术条件下焊接接头疲劳裂纹的产生与裂纹扩展原理,了解2种焊接接头的抗裂纹扩展能力,为工程实践应用提供数据参考。方法 采用疲劳裂纹扩展试验方法,测试上述2种焊接工艺条件下焊缝金属和热影响区组织的疲劳裂纹扩展速率da/d N和阈值,使用光学显微镜和扫描电子显微镜观察并分析金相组织和疲劳断口形貌特征。结果 疲劳裂纹倾向于沿裂纹处萌生,裂纹的存在成为主要的裂纹扩展源头,有利于加速裂纹向前延伸。热影响区由于组织结构不均匀,不同位置的晶粒尺寸存在明显差异,疲劳裂纹扩展路径倾向于沿靠近焊缝一侧向靠近母材区域扩展。TIG焊接工艺下焊缝金属和热影响区的裂纹扩展速率明显低于FSW焊接工艺下的焊缝金属和热影响区,与此同时,TIG焊接接头表现出优良的抗疲劳裂纹扩展性能。结论 通过此研究,建议2219铝合金焊接接头采用TIG焊接工艺,抗疲劳裂纹扩展效果更佳。  相似文献   

6.
In this paper, Narrow Gap Metal Active Gas (NG-MAG) arc welding system was introduced, aiming at efficiently jointing AISI 316LN thick plate used in International Thermonuclear Experimental Reactor (ITER) device. Effect of heat input on cryogenic impact toughness of the WM was investigated and suitable welding parameters were explored to optimize the cryogenic toughness of weld metal (WM) and avoid weld defects simultaneously. Impressively, the maximum low temperature toughness of the NG-MAG arc welded WM could reach more than 100 J, which could be comparable with that of the Tungsten Inert Gas (TIG) arc welded WM. More importantly, the NG-MAG arc welding showed much higher efficiency than the counterpart TIG. The less compositional segregation, and smaller dendrite size due to the lower level of heat input in NG-MAG arc welding were believed to play the critical role in enhancing the cryogenic toughness.  相似文献   

7.
黄勇  赵文强  张利尧 《材料导报》2017,31(22):70-74
提出了一种新型活性焊接方法——粉末熔池耦合活性TIG焊(Powder pool coupled activating TIG welding,PPCATIG)。该方法采用双层气体进行焊接,内层利用惰性气体保护钨极,外层通过自动送粉装置将活性剂粉末随保护气体送入电弧-熔池区域,增加熔深,提高焊接效率,实现机械化自动化焊接。针对SUS304不锈钢进行了直流正接PPCA-TIG表面熔深,通过与传统TIG焊对比,研究了SiO_2活性剂对电弧形态、焊缝成形、组织和力学性能的影响。结果表明:SiO_2能使电弧等离子体收缩、熔池金属流态改变,并且焊缝熔深能达到传统TIG焊的3倍以上,焊接效率明显提高。焊缝组织主要为奥氏体和铁素体,铁素体形态以骨架状为主。焊缝抗拉强度略低于母材,但相比传统TIG焊,焊缝屈服强度略有提高,其焊缝低温冲击韧性达到了传统TIG焊的96.8%,表现出了良好的力学性能。同时,采用该方法可有效避免活性剂粉末对钨极的污染。  相似文献   

8.
A transient three‐dimensional model that describes physical phenomena inside a welding pool during gas–metal arc welding process is presented. The model considers such phenomena as heat‐mass transfer, electromagnetics, hydrodynamic processes and deformation of the weld pool free surface. The fluid flow in the weld pool is induced due to the presence of the mechanical impact of the droplets, thermo‐capillary surface tension, thermal buoyancy and electromagnetic forces. The weld pool surface deformation is calculated by considering arc pressure and droplet impact force. A comparative analysis of the impact of the electric current of the welding arc and different force factors causing the motion of liquid metal in the weld pool on the shape of the welded seam was carried out and discussed.  相似文献   

9.
The effect of microstructural characteristics on high-cycle fatigue properties and fatigue crack propagation behavior of welded regions of an investment cast Ti-6Al-4V were investigated. High-cycle fatigue and fatigue crack propagation tests were conducted on the welded regions, which were processed by two different welding methods: tungsten inert gas (TIG) and electron beam (EB) welding. Test data were analyzed in relation to microstructure, tensile properties, and fatigue fracture mode. The base metal was composed of an alpha plate colony structure transformed to a basket-weave structure with thin platelets after welding and annealing. High-cycle fatigue results indicated that fatigue strength of the EB weld was lower than that of the base metal or the TIG weld because of the existence of large micropores formed during welding, although it had the highest yield strength. In the case of the fatigue crack propagation, the EB weld composed of thinner platelets had a faster crack propagation rate than the base metal or the TIG weld. The effective microstructural feature determining the fatigue crack propagation rate was found to be the width of platelets because it was well matched with the reversed cyclic plastic zone size calculated in the threshold ΔK regime.  相似文献   

10.
The weld pool geometry and its dimension in the globular-transfer mode during gas metal arc welding (GMAW) were numerically analyzed by using the thermal conduction model, which considered the influence of the deformation of weld pool surface on heat flow in the quasi-steady state. According to the features of the globular-transfer mode, the additional heat energy from molten metal droplets was treated as a plane or volumetric heat source term to correspond to different welding conditions. The weld pool surface profile was predicted while considering the effect of droplet impingement on the depression of the weld pool. The bead-on-plate GMAW experiments were performed under different welding conditions to validate the model of numerical analysis. It has been found that the predicted results agree well with the measured ones.  相似文献   

11.
目的 研究乏燃料水池用钢板316L与覆板S32101双相不锈钢的焊接性、接头不同区域显微组织特征及接头与母材之间的性能差异.方法 利用氩弧焊接技术对5 mm厚的316L底板与3 mm厚的S32101覆板以搭接的形式进行焊接,利用金相显微镜、扫描电镜、维氏显微硬度仪和电子万能材料试验机对焊接接头的宏观形貌、显微组织以及力学性能进行研究.结果 316L/S32101焊缝组织主要由铁素体基体、晶界树枝状奥氏体以及晶内细小片状奥氏体所组成;316L侧靠近焊缝处存在一个较窄的熔合区,其组织由奥氏体基体和少许细小分散的铁素体组成,而S32101侧靠近焊缝处组织则由粗大铁素体晶粒和沿晶粒边界分布的若干小块状奥氏体组成.从316L母材区到焊缝区,硬度显著增大,而从焊缝区到S32101母材区,硬度变化很小;焊接接头的抗拉强度高达510 MPa,为两侧316L和S32101母材强度的87.9%和88.6%.结论 在焊接电流为240 A和焊接速度为300 mm/min的条件下,可以通过氩弧焊获得成形良好的搭接接头,且接头的力学性能优异.  相似文献   

12.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

13.
本文采用电弧传感熔池谐振法研究了30CrMnSiA钢熔透控制TIG焊工艺,同时选取普通连续TIG焊进行了对比讨论,并对其效果进行了分析。试验结果证明,该控制方法在适当的工艺条件下,对30CrMnSiA钢可实现高可靠性的熔透控制,不仅能单面焊双面成形,且熔宽均匀无下塌,不需焊前预热和焊后缓冷。在较大热输入量条件下,接头仍能保持较好的组织与性能。  相似文献   

14.
Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes.Through simultaneous solutions of the set of conservation equations for mass,momentum, energy and current, a mathematical model has been developed to predict the velocity,temperature,and current density distributions in argon welding arcs.The predicted temperature fields in arc regions, and the distribution of current density and heat flux at the anode agree well with measurements reported in literatures.This work could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic, two-way coupling between the welding arc and the weld pool surface is properly represented.  相似文献   

15.
Abstract

Plates of 3–5 mm in thickness were extracted from an AZ91D ingot and then butt joints of the plates were produced using tungsten inert gas (TIG) welding method. The TIG arc was also used to deposit welding beads on some of the thin plates. No cracking was found in the butt joints. However, hot cracking was always observed to propagate from the heat affected zone (HAZ) under the welding bead into the weld metal right after a welding bead was deposited on the thin plate. Metallographic and fractographic evidence was obtained to show that the hot cracking is 'liquation cracking' in the partially melted HAZ under the high thermal stresses. In the butt joints, the weld metal has the finest grains, highest strength and best ductility, and the HAZ was found to be the 'weakest link'.  相似文献   

16.
Under the condition of tungsten inert gas shielded welding (TIG) + shielded metal arc welding (SMAW) technology, the microstructure in the welding zone of 9Cr-1Mo-V-Nb (P91) heat-resisting steel is studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test results indicate that when the weld heat input (E) of TIG is 8.5 ∼ 11.7 kJ/cm and the weld heat input of SMAW is 13.3 ∼ 210 kJ/cm, the microstructure in the weld metal is composed of austenite and a little amount of δ ferrite. The substructure of austenite is crypto-crystal martensite, which included angle. There are some spot precipitates in the martensite base. TEM analysis indicates that the fine structure in the heat-affected zone is lath martensite. There are some carbides (lattice constant, 1.064 nm) at the boundary of grain as well as inside the grain, most of which are Cr23C6 and a little amount of (Fe, Me)23C6.  相似文献   

17.
Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO2, Cr2O3 and SiO2) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO2 and Cr2O3 increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO2 increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO2 flux, and increased with the used of Cr2O3 flux. The mechanism of TiO2 and Cr2O3 fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone.  相似文献   

18.
In the present paper. a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and "indirect" heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically-analyzed by using the model. and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result. it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding, including weld bead with undercutting.  相似文献   

19.
提出了一种虚拟材料法,用以消除铍激光热传导对接焊热过程数值分析中钎料与母材间的对接间隙所带来的能量边界条件.假定对接间隙被一种具有不同于母材和钎料的热物性参数的虚拟材料所填充,用指数旋转抛物线体热源模型预测了铍激光热传导对接焊缝横断面轮廓,并进行了试验研究.结果表明,在考虑对接间隙的情况下计算所得的熔池轮廓更接近于试验结果.虚拟材料的导热系数对熔池形状的影响较大,而密度和比热对熔池形状的影响较小.随着导热系数的增大,熔深和熔宽均逐渐减小.当导热系数取30 W/(m.K)时,计算所得的熔池形状与试验测得的值吻合良好.  相似文献   

20.
The main objective of this study is to generate new understanding and improve computer methods for calculating the thermal cycles and temperature distribution of 5A06 aluminum alloy structure during discontinuous welding. Predicting the thermal cycle also provides an estimate of the weld penetration and weld width. The submodeling technique was used to save computing time and improve calculation accuracy. The arc heat input was applied in the weld zone using different forms of surface, volumetric and combined heat flux distribution functions. In order to validate the thermal simulation model, temperature distribution at the weld backside was precisely measured by infrared thermography during the welding process. The simulation results showed that the model is quite sensitive to the energy distribution during the welding process, the effects of the pre-heating and re-heating are significant. The present simulation model can be used as a proper tool to investigate the effect of different metal inertia gas (MIG) process parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号