首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Powders of Si–B–O–N prepared by organometallic polymeric precursor were hot pressed into ceramics at different temperatures. Experimental results indicated that density of ceramics increased slowly with increasing temperature before 1400°C, and increased rapidly after 1400°C. Density of ceramics sintered at 1600°C was 2.11 g cm-3, which was the highest in this system. Amorphous silicon oxynitride decomposed when sintered at temperatures higher than 1600°C. Differential scanning calorimetry and X-ray diffraction analyses results showed that the amorphous Si–B–O–N began to crystallise at 1350°C and only h-BN precipitates was detected. Observations using SEM showed that particles precipitated at 1400°C were close to equiaxial crystals, however, particles precipitated at 1600°C were well developed platelets. The growth mechanism of precipitates was step like epitaxial growth. Crystals in ceramics sintered at 1700°C were quite small and adhered by molten silica.  相似文献   

2.
Highly-transparent trivalent erbium ion doped calcium fluoride (5 mol % Er:CaF2) ceramics were fabricated by a hotpressing (HP) method using high-purity Er:CaF2 nanoparticles, which were synthesized by co-precipitation method. The mean grain size of the nanoparticles was about 24.7 nm. The nanoparticles were sintered at 600 °C, 700 °C, 800 °C and 900 °C, respectively, for 30 min under a uniaxial pressure of 30 MPa and vacuum of 10?3 Pa with 1 mol % lithium fluoride (LiF) as sintering additive. The 5 mol % Er:CaF2 ceramics sintered at 800 °C exhibits high density and pore-free microstructure with an average grain size of about 8 μm. The optical transmittance of the transparent ceramics is close to 85 % at visible and nearinfrared wavelengths. The strong and broad absorptions peaks corresponding to characteristic absorption of trivalent erbium ions make the ceramics a potential candidate for infrared and upconversion laser operating.  相似文献   

3.
Preparation of ceramics based on synthetic perovskite and zirconolite (analogs of titanate minerals) using self-propagating high-temperature synthesis (SHS) was studied. Ceramics was prepared as matrix material for immobilization of high-level waste (HLW). Using model HLW, the optimal synthetic conditions were determined which allow preparation of compact low-porosity material (in the form of cylindrical blocks) exhibiting high strength and low rate of leaching of Cs, Sr, Y, Ce, and La into double-distilled water. The phase composition and micro structure of the resulting materials were studied. As found, immobilization of Cs is accompanied by significant loss of this element.  相似文献   

4.
In this paper, erosion wear behaviour of aluminium nitride (AlN) ceramics is studied. The influence of particle hardness and shape on erosion of the AlN surface is examined. The effect of varying the impingement angle on the weight loss and the roughness parameters of AlN ceramics testing sample is also determined. Therefore, erosive wear behaviour of AlN ceramics was investigated using SiC and SiO2 particles as erodents, at following impact angles: 30°, 45°, 60°, 75° and 90°. Scanning electron microscopy (SEM) was used to analyze the eroded surfaces in order to determine erosion mechanisms. The roughness parameters (Ra, Rz and Rmax), before and after erosion with SiO2 and SiC particles at 30° and 90° angles of impingement, respectively, were determined using a profilometer. It was found that the impact angle is influencing the erosion wear of the AlN ceramics and maximum erosion takes place at impact angle of 90°. The results indicate that hard, angular SiC particles cause more damage than softer, more rounded SiO2 particles.  相似文献   

5.
A forsterite-based glass ceramic material has been developed from potassium feldspar for low temperature co-fired ceramics (LTCC). The crystalline phases and microstructure of forsterite-based glass ceramics were investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The results show only forsterite was formed in temperature range 900–1,050 °C, and sapphirine was formed in temperature range 1,080–1,100 °C. The glass compact could be well densified at 950 °C, and full densification samples were obtained in temperature range 1,000–1,050 °C. The physical properties including dielectric properties, bending strength and thermal expansion of the specimens were also evaluated. The dielectric constants are in the range 7.00–8.25 and dielectric loss is below 0.01 in the frequency range 1–10 MHz. The specimens obtained in temperature range 950–1,100 °C are of high bending strength (69–106 MPa). The linear coefficient of thermal expansion of the specimen sintered at 1,080 °C is 9.76 × 10?6 K?1. All of these qualify the forsterite-based glass ceramic for further investigation as a candidate suitable for applications in LTCC field.  相似文献   

6.
Positive temperature coefficient of resistance ceramics of composition (Ba0.89Ca0.08Pb0.03)TiO3 + Y2O3 + MnO + SiO2 have been produced using barium titanate powder with an average crystallite size of 125 nm prepared by calcining barium titanyl oxalate at 900°C. The effect of firing temperature on their microstructure and electrical properties has been studied. The results demonstrate that the ceramics possess semiconducting properties starting at a firing temperature of 1205–1215°C. The room-temperature resistivity of the ceramics has a minimum at t firing ≈ 1245–1250°C. The samples sintered at 1250–1260°C have the largest positive temperature coefficient of resistance. The highest electric strength (360 V/mm at ρ25°C = 290 Ω cm) is offered by the thermistor materials sintered at 1260°C, which is 60–70°C below the firing temperature of analogous ceramics produced by solid-state reaction.  相似文献   

7.
BiFeO3 polycrystalline ceramics was prepared by solid-state reaction method and its structural, optical and magnetic properties were investigated. BiFeO3 was synthesized in a wide range of temperature (825–880 °C) and a well crystalline phase was obtained at a sintering temperature of 870 °C. X-ray diffraction patterns of the samples were recorded and analyzed for the confirmation of crystal structure and the determination of the lattice parameters. The average grain size of the samples was found to be between 1–2 μm. The determined value of direct bandgap of BiFeO3 ceramics was found to be 2.72 eV. The linear behavior of M-H curve at room temperature confirmed antiferromagetic properties of the BiFeO3 (BFO). S shaped M-H curve was obtained at a temperature of 5 K. In the whole temperature measurement range (5–300 K) of M-T, no anomalies were observed due to high Curie temperature and Neel temperature of the BiFeO3.  相似文献   

8.
BaTiO3 (BT) nanoparticles were synthesized by a modified polymeric precursor method in a weak acid solution. The synthesized process of BT precursor with increasing calcination temperature was investigated through thermal analysis (DTA/TG), X-ray diffraction, transmission electron microscope and Fourier-transform infrared spectroscopy. Good dispersive and homogeneous cubic BT nanoparticles were calcined at 800 °C, whereas dense BT ceramics were sintered at ~1,160 °C. The present results showed that the dielectric, piezoelectric and ferroelectric properties of BT ceramics were dependent on the ceramics densification and crystallographic structure. The excellent electric properties (P r = 10.5 μC/cm2, d 33 = 217 pC/N, k p = 0.32 %) were found at a sintering temperature of 1,160 °C, which was due to the coexistence of tetragonal and orthorhombic phase. The depressed electric properties at higher sintering temperature were associated to oxygen vacancies and impurity phases. In addition, phase evolutions of BT nanoparticles and ceramics were all stated in detail.  相似文献   

9.
Textured BaTiO3 (BT) ceramics were fabricated by templated grain growth method. Effects of sintering conditions on the grain growth process of textured-BT ceramics were investigated. Orientation degree increased initially and then decreased with increasing soaking time. The ceramics were composed of equiaxed matrix grains and brick-like template particles. The brick-like particles aligned parallel to the casting direction by observing from SEM images. A (h00)-preferred orientation was confirmed by SAED and XRD patterns. Mechanism of grain growth in textured-BT ceramics was studied. Both consumption of matrix by templates and grain growth of templates determined the orientation degree of ceramics. The kinetic mechanism for grain orientation was also discussed by the simplified phenomenological kinetic equation. The average activation energies were 364 kJ/mol for matrix grain and 918 kJ/mol for template particle, respectively. Finally, a dense ceramic with 85% grain orientation was obtained after sintering at 1400 °C for 2 h.  相似文献   

10.
The influence of synthesis parameters, such as calcination temperature and sintering temperature, on the microstructure, phase composition, and electrical properties of NiMn2O4 negative temperature coefficient (NTC) ceramics was systematically investigated. The NiMn2O4 NTC ceramics were synthesized via solid-state coordination reaction. With increasing sintering temperatures, the relative density increased, whereas the porosity decreased. Single-phase, cubic spinel ceramic was obtained following sintering at 900 and 1,050 °C, whereas a secondary phase, i.e., NiO, was detected when the sintering temperature was higher than 1,100 °C. High-density ceramics were obtained when the sintering temperature was higher than 1,100 °C, and featured the lowest room temperature resistivity of 2,924 Ω cm and thermal constant B of 3,429 K. The latter parameter reflects the temperature sensitivity of the NTC ceramics. Variations of the electrical property were because of increases in density and onset of decomposition.  相似文献   

11.
Porous silicon carbide ceramics were fabricated from SiC, polysiloxane, and polymer microbead (as a pore former) at a temperature as low as 800 °C by a simple pressing and heat-treatment process. The effects of polysiloxane and template contents on the porosity and strength of the ceramics were investigated. During heat treatment, the polysiloxane transformed to an amorphous SiOC phase, which acted as the bonding material between SiC particles, and the polymer microbeads decomposed into gases and left pores. The porosity of porous SiC ceramics could be controlled within a range of 26–56 % with the present set of processing variables. The porous SiC ceramics showed a maximal porosity of 56 % when 10 μm SiC particles and 16 % polysiloxane were used with 20 % polymer microbeads. Flexural strength generally increased with increasing polysiloxane content and decreased with increasing polymer microbead content. Typical flexural strength of the porous SiC ceramics was 53 MPa at 42 % porosity.  相似文献   

12.
The effect of calcining temperature on microstructures and electrical properties of modified lead zirconate titanate ceramics has been investigated. Specimens of the modified lead zirconate titanate ceramics, formed with different powders calcined over the temperature range from 800 to 950 °C, were prepared by roll forming process. It is observed that the calcining temperature of the powders alters the grain size, which, in turn, modifies the electrical properties of the ceramics. The results also show that dielectric constant, saturated polarization and piezoelectric coefficient tend to increase with increasing calcining temperature up to 900 °C and then to sharply decrease. The best electrical properties were obtained from the samples with the calcining temperature of 900 °C. At the lower calcining temperatures, a small PbO excess seems to result in PbO-rich grain boundaries and anomalous grain growth during sintering process. In addition, when the calcining temperature was increased to 950 °C, a PbO deficiency appears to take place by breaking up the stoichiometry.  相似文献   

13.
The impact of synthesis parameters, such as calcination temperature and reaction time, on the microstructure, phase compositions and electrical properties of Ni0.6Mn2.4O4 negative temperature coefficient (NTC) ceramics, which were synthesized via solid-state coordination reaction method, was systematically explained. With enhancing calcination temperature and time, the relative densities were raised, while the porosities diminished. A compact single-phase cubic spinel ceramic could be obtained after annealing at 1,100 and 1,150 °C, while a secondary phase Mn3O4 was detected when the annealing temperature raised to 1,200 °C. For the ceramics calcinated at 1,100 or 1,150 °C for 3 h, their resistivities were 2,133 and 2,178 Ω cm, the thermal constant B, which reflects the temperature sensitivity of the NTC ceramics, were 3,820 and 3,857 K. While the ceramic prepared at 1,200 °C for 3 h, the resistivity and the B value reached 2,273 Ω cm and 3,810 K, respectively. This phenomenon was attributed to the increase of lattice parameters and the reduction of Mn4+–Mn3+ at high temperatures.  相似文献   

14.
Zirconia-toughened mullite (ZTM) ceramics has been prepared by using an electrically fused mullite as a raw material and its mechanical properties and microstructure as a function of impurities in the raw material were studied. These impurities led to a decrease in the mechanical properties of ZTM ceramics by changing the properties of the glassy phase in the ceramics, especially at high temperature. The mechanical properties of the ceramics were improved by adding B2O3, and the toughness at room temperature increased from 4.4 MPa m1/2 to 5.9 MPa m1/2 while that at 800°C increased from 2.9 MPa m1/2 to 4.4 MPa m1/2. The toughness of the ceramics on the addition of B2O3 at room temperature was increased by 34% and that at 800°C by 52%. The influence of the impurities on the ZTM ceramics and the improvement of the ceramic properties by the addition of B2O3 were studied and their mechanisms were discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Celsian ceramics based on hexagonal BaAl2Si2O8 have been prepared through synthesis at 1450°C followed by firing at 1500°C. The unit-cell parameters of BaAl2Si2O8 and principal bond distances in its structure have been determined by the Rietveld method. Using differential thermal analysis and temperature-dependent dielectric measurements, we have determined the temperature of the α (hexagonal) to β (hexagonal) phase transition in our samples: 280–320°C.  相似文献   

16.
The high performance X9R ceramics could be sintered at as low as 1,120?°C by doping 3?mol% synthesized BaTiO3 (SB) additives into the BaTiO3-based ceramics, with a dielectric constant greater than 2,200 at 25?°C and dielectric loss lower than 1.7?%. The effects of SB additives on the microstructure and dielectric properties of BaTiO3-based ceramics were investigated. The dielectric constant of BaTiO3-based ceramics doped with 3?mol% SB was increased due to the promotion of the densification of ceramics. With SB content up to 4.5?mol%, Ti4+’s polarization was depressed, which resulted in the decrease of augmented dielectric constant at 25?°C. The partial solid solution was formed between Pb(Ti, Sn)O3 and BaTiO3, and the substitutions of Pb at A-sites and Sn at B-sites were existed. The strengthen of Ti–O bonds and higher Curie point of Pb(Ti0.55Sn0.45)O3 was helpful to increased the Curie point of the ceramics effectively. Doped with SB additives, the volume of ferroelectric core was increased, and the sharp peak intensity at Curie point was increased accordingly. Capacitance temperature characteristics was improved attributed to the mutual effects of SB and Pb(Ti0.55Sn0.45)O3. The formation of core–shell structure was sensitive to the sintering temperature, so the dielectric properties of ceramics were highly depended on the sintering temperature.  相似文献   

17.
The effect of sintering temperature (ranging from 1055 to 1200 °C) on the phase ingredient and dielectric property of the nominal BaTi2O5 ceramics (starting with the Ba/Ti of 1:2) fabricated by a spark plasma sintering method were systematically studied. At the first stage, BaTi2O5 component was enhanced in the sintering temperature range of 1055–1120 °C; it turned out to be the dominant phase. For these BaTi2O5 phase dominated ceramics, the Curie temperature T c rised on increasing the sintering temperature and saturated around 440 °C with the maximum dielectric constant of 500. Further increasing the sintering temperature, the decomposition of the obtained BaTi2O5 into BaTiO3 extensively happened; the ceramics turned to be the BaTi2O5 and BaTiO3 coexisting state. These ceramics can be characterized by two dielectric anomalies. One at ~420 °C stood for the phase transition of BaTi2O5 while the other at ~150 °C stood for the transition of BaTiO3, which is exceptionally high as the normal BaTiO3 ceramics. Further increasing the sintering temperature (until 1200 °C) would dramatically enhance the BaTiO3 phase; the ceramics showed T c at 130 °C with the maximum dielectric constant of 1800.  相似文献   

18.
The LiTaO3 powders with sub micrometer grade grain size have been synthesized successfully using a molten salt method. Lithium tantalate began to form at 400 °C reaction temperature and transformed to pure phase without residual reactants when it was processed at 500 °C for 4 h in static air. The undoped LiTaO3 ceramics with a Curie temperature about 663 °C were obtained by pressureless sintering at 1300 °C for 3 h. The relative dielectric constant (ɛr) increases from 50 to 375 at temperature ranging from 30 to 663 °C and then decreases quickly as the temperature increases above 663 °C. The ceramics shows a relative dielectric constant of 49.4, a dielectric loss factor (tan δ) of 0.007, a coercive field (Ec) of 28.66 kV/cm and a remnant polarization (Pr) of 32.48 μC/cm2 at room temperature.  相似文献   

19.
The present work reports the results on the deformation behaviour of ZrO2-3 mol% Y2O3 (3Y-TZP) ceramics which were prepared by pressureless sintering at 1400°C. Dense, cylindrical samples were subjected to uniaxial compression tests under a constant stress of 15 MPa in the temperature range of 1200–1400°C. The ceramics exhibit considerable ductility, attaining over 60% true strain without any edge cracking. Microstructural changes due to interaction of grain boundary viscous phase with the ultrafine and equiaxed grains were analyzed by transmission electron microscopy. Results show the grain boundary sliding accompanied by a diffusion accommodation process as the predominant deformation mechanism in these ceramics.  相似文献   

20.
Cordierite-bonded porous SiC ceramics were prepared by air sintering of cordierite sol infiltrated porous powder compacts of SiC with graphite and polymer microbeads as pore-forming agents. The effect of sintering temperature, type of pore former and its morphology on microstructure, mechanical strength, phase composition, porosity and pore size distribution pattern of porous SiC ceramics were investigated. Depending on type and size of pore former, the average pore diameter, porosities and flexural strength of the final ceramics sintered at 1400 °C varied in the range of ~ 7.6 to 10.1 µm, 34–49 vol% and 34–15 MPa, respectively. The strength–porosity relationship was explained by the minimum solid area (MSA) model. After mechanical stress was applied to the porous SiC ceramics, microstructures of fracture surface appeared without affecting dense struts of thickness ~ 2 to 10 µm showing restriction in crack propagation through interfacial zone of SiC particles. The effect of corrosion on oxide bond phases was investigated in strong acid and basic salt medium at 90 °C. The residual mechanical strength, SEM micrographs and EDX analyses were conducted on the corroded samples and explained the corrosion mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号