首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
SUBCLU高维子空间聚类算法在自底向上搜索最大兴趣子空间类的过程中不断迭代产生中间类,这些中间类的产生消耗了大量时间,针对这一问题,提出改进算法BDFS-SUBCLU,采用一种带回溯的深度优先搜索策略来挖掘最大兴趣子空间中的类,通过这种策略避免了中间类的产生,降低了算法的时间复杂度。同时BDFS-SUBCLU算法在子空间中对核心点增加一种约束,通过这个约束条件在一定程度上避免了聚类过程中相邻的类由于特殊的数据点合为一类的情况。在仿真数据集和真实数据集上的实验结果表明BDFS-SUBCLU算法与SUBCLU算法相比,效率和准确性均有所提高。  相似文献   

2.
二元数据子空间聚类算法的初始化研究   总被引:2,自引:1,他引:1  
针对二元数据空间高维稀疏性的特点而提出的有限混合伯努利模型,能够快速寻找映射簇的模型框架;EM算法是数学模型进行参数迭代的重要方法,其算法的优劣很大程度上取决于其初始参数。对于运用EM算法来实现有限混合伯努利模型聚类算法已有许多研究, EM算法中参数的选取直接影响聚类算法的性能。引入 Binning法和改变数据之间相似度测量方式、中心点的选取方式来进行初始化,从而大大减少聚类结果对初始参数的依赖,实验证明该算法是高效的、正确的。  相似文献   

3.
一种高维空间数据的子空间聚类算法   总被引:6,自引:1,他引:6  
王生生  刘大有  曹斌  刘杰 《计算机应用》2005,25(11):2615-2617
传统网格聚类方法由于没有考虑到相邻网格内的数据点对考查网格的影响,存在不能平滑聚类以及聚类边界判断不清的情况。为此提出了一种高维空间数据的子空间聚类算法,扩展了相邻聚类空间。实验结果显示,克服了传统聚类的不平滑现象,使聚类边界得以很好的处理。  相似文献   

4.
刘竞杰  陶亮 《计算机工程与应用》2012,48(12):139-143,182
结合传统的Parzen窗方法并引入一种更加合理的历史数据丢弃策略,在此基础上,通过计算可以得到整个数据集在低维空间投影的信息熵,利用信息熵实现了一种适用于高维数据流的子空间聚类算法(PStream)。理论及实验均表明,与传统的算法相比,该算法可以在一次遍历的前提下,完成对数据流的高精度聚类,虽然其运行效率与现有的方法(如HPStream)相比差别不大,但是却明显地改善了聚类效果。  相似文献   

5.
随着信息技术的飞速发展和大数据时代的来临,数据呈现出高维性、非线性等复杂特征。对于高维数据来说,在全维空间上往往很难找到反映分布模式的特征区域,而大多数传统聚类算法仅对低维数据具有良好的扩展性。因此,传统聚类算法在处理高维数据的时候,产生的聚类结果可能无法满足现阶段的需求。而子空间聚类算法搜索存在于高维数据子空间中的簇,将数据的原始特征空间分为不同的特征子集,减少不相关特征的影响,保留原数据中的主要特征。通过子空间聚类方法可以发现高维数据中不易展现的信息,并通过可视化技术展现数据属性和维度的内在结构,为高维数据可视分析提供了有效手段。总结了近年来基于子空间聚类的高维数据可视分析方法研究进展,从基于特征选择、基于子空间探索、基于子空间聚类的3种不同方法进行阐述,并对其交互分析方法和应用进行分析,同时对高维数据可视分析方法的未来发展趋势进行了展望。  相似文献   

6.
程铃钫  杨天鹏  陈黎飞 《计算机应用》2017,37(10):2952-2957
针对受均匀效应的影响,当前K-means型软子空间算法不能有效聚类不平衡数据的问题,提出一种基于划分的不平衡数据软子空间聚类新算法。首先,提出一种双加权方法,在赋予每个属性一个特征权重的同时,赋予每个簇反映其重要性的一个簇类权重;其次,提出一种混合型数据的新距离度量,以平衡不同类型属性及具有不同符号数目的类属型属性间的差异;第三,定义了基于双加权方法的不平衡数据子空间聚类目标优化函数,给出了优化簇类权重和特征权重的表达式。在实际应用数据集上进行了系列实验,结果表明,新算法使用的双权重方法能够为不平衡数据中的簇类学习更准确的软子空间;与现有的K-means型软子空间算法相比,所提算法提高了不平衡数据的聚类精度,在其中的生物信息学数据上可以取得近50%的提升幅度。  相似文献   

7.
离群点检测是数据挖掘一个重要内容,它为分析各种海量的、复杂的、含有噪声的数据提供了新的方法。对离群数据挖掘几类主要的方法进行了分析和评价,并在此基础上了提出了一种基于遗传聚类的离群点检测算法。该算法结合了遗传算法全局搜索的优点和K-均值方法局部收敛速度快的特点,取得较好效果。实验验证该算法很好地检测到数据集中的离群点,同时还完成了数据集的聚类。具有较好的实用性。  相似文献   

8.
针对深度子空间聚类问题中不同层次特征中互补信息挖掘困难的问题,在深度自编码器的基础上,提出了一种在编码器获取的低层和高层特征之间探索互补信息的多样性表示的深度子空间聚类(DRDSC)算法。首先,基于希尔伯特-施密特独立性准则(HSIC)建立了不同层次特征衡量多样性表示模型;其次,在深度自编码器网络结构中引入特征多样性表示模块,从而挖掘有利于提升聚类效果的图像特征;此外,更新了损失函数的形式,有效融合了多层次表示的底层子空间;最后,在常用的聚类数据集上进行了多次实验。实验结果表明,DRDSC在数据集Extended Yale B、ORL、COIL20和Umist上的聚类错误率分别达到1.23%、10.50%、1.74%和17.71%,与高效稠密子空间聚类(EDSC)相比,分别降低了10.41、16.75、13.12和12.92个百分点;与深度子空间聚类(DSC)相比,分别降低了1.44、3.50、3.68和9.17个百分点,说明所提出的DRDSC算法有更好的聚类效果。  相似文献   

9.
吴涛  陈黎飞  钟韵宁  孔祥增 《计算机应用研究》2023,40(11):3303-3308+3314
针对传统K-means型软子空间聚类技术中子空间差异度量定义的困难问题,提出一种基于概率距离的子空间差异表示模型,以此为基础提出一种自适应的投影聚类算法。该方法首先基于子空间聚类理论提出一个描述各簇类所关联的软子空间之间的相异度公式;其次,将其与软子空间聚类相结合,定义了聚类目标优化函数,并根据局部搜索策略给出了聚类算法过程。在合成和实际数据集上进行了一系列实验,结果表明该算法引入子空间比较可以为簇类学习更优的软子空间;与现有主流子空间聚类算法相比,所提算法大幅度提升了聚类精度,适用于高维数据聚类分析。  相似文献   

10.
Subspace clustering is a data-mining task that groups similar data objects and at the same time searches the subspaces where similarities appear. For this reason, subspace clustering is recognized as more general and complicated than standard clustering. In this article, we present ChameleoClust+, a bioinspired evolutionary subspace clustering algorithm that takes advantage of an evolvable genome structure to detect various numbers of clusters located in different subspaces. ChameleoClust+ incorporates several biolike features such as a variable genome length, both functional and nonfunctional elements, and mutation operators including large rearrangements. It was assessed and compared with the state-of-the-art methods on a reference benchmark using both real-world and synthetic data sets. Although other algorithms may need complex parameter settings, ChameleoClust+ needs to set only one subspace clustering ad hoc and intuitive parameter: the maximal number of clusters. The remaining parameters of ChameleoClust+ are related to the evolution strategy (eg, population size, mutation rate), and a single setting for all of them turned out to be effective for all the benchmark data sets. A sensitivity analysis has also been carried out to study the impact of each parameter on the subspace clustering quality.  相似文献   

11.
通过分析子空间搜索算法的研究现状以及存在的问题,提出基于幂图的离群子空间搜索算法。该方法主要讨论离群点产生的原因,能够找出单个对象的离群子空间,并根据离群子空间对离群点进行分类。在对幂图扩展的基础上进行剪枝,减少了存储量和计算量,算法性能得到很大的提高。采用实例说明了该算法,并通过实验证明了该算法的可行性和高效性。  相似文献   

12.
在低秩表示算法的基础上,提出了一个新模型。新模型构建了揭示数据内在特征联系的亲和度图以实现聚类任务。首先,根据矩阵分解原理对原始数据重新生成数据字典,在算法初始输入时筛除部分噪声。其次,利用数据间的稀疏性加强局部约束,为给定的数据向量构建非负低秩亲和度图。亲和度图中边的权重由非负低秩稀疏系数矩阵获得,系数矩阵通过每个数据样本作为其他数据样本的线性组合完成构建,如此获得的亲和度图显示了数据的子空间结构,同时表现局部线性结构。与现存的子空间算法相比,非负局部约束低秩子空间算法在聚类效果上有明显的提升。  相似文献   

13.
针对现有的离群数据检测算法时间复杂度过高,且检测质量不佳的不足,提出一种新的基于改进的OPTICS聚类和LOPW的离群数据检测算法。首先,使用改进的OPTICS聚类算法对原始数据集进行预处理,筛选由聚类形成的可达图得到初步离群数据集;然后,利用新定义的基于P权值的局部离群因子LOPW计算初步离群数据集中对象的离群程度,计算距离时引入去一划分信息熵增量确定属性的权重,提高离群检测准确性。实验结果表明,改进后的算法不仅提高了运算效率,而且提高了对离群数据检测的精确度。  相似文献   

14.
张德喜  黄浩 《计算机应用》2006,26(8):1884-1887
EM算法的计算强度较大,且当数据集较大时,计算效率较低。为此,提出了基于部分E步的混合EM算法,降低了算法的计算强度,提高了算法对数据集大小的适应能力,并且保持了EM算法的收敛特性。最后通过将算法应用于大的数据集,验证了该算法能减少计算强度。  相似文献   

15.
针对已有的特征权重自调节软子空间(SC-FWSA)聚类算法存在对噪声敏感的问题,基于一种非欧氏距离,提出一种鲁棒的特征权重自调节软子空间(RSC-FWSA)聚类算法。RSC-FWSA在迭代过程中自适应地为数据生成一个权函数,通过计算每一类数据的加权平均来计算聚类中心,这种"加权平均"使得聚类中心的估计对噪声相对不敏感,从而可以提升算法对带噪声数据和复杂结构数据的聚类精度。人工数据和真实数据上的对比性实验,验证了RSC-FWSA算法的有效性。特别是人工带噪声数据和3个真实数据:Wine, Zoo以及Breastcancer上的实验结果表明,RSC-FWSA可以显著提升原对应算法的聚类精度。RSC-FWSA具有的强鲁棒性使得该算法适用于高维带噪声和复杂结构数据的聚类问题。  相似文献   

16.
针对不确定数据流上的聚类问题提出一种不确定数据流子空间聚类算法UDSSC.该算法使用滑动窗口机制接收新到达的数据,剔除陈旧的数据;还引入子空间簇生成策略和新型离群点机制;系统建立了三个缓冲区分别存储新到来的元组、要进行聚类的元组和离群点元组,以此获得高质量的聚类结果.实验表明,UDSSC算法与同类型算法相比,具有更好的聚类效果、更低的时间复杂度和更强的扩展性.  相似文献   

17.
高冉  陈花竹 《计算机应用》2021,41(12):3645-3651
子空间聚类的目的是将来自不同子空间的数据分割到其本质上所属的低维子空间。现有的基于数据的自我表示和谱聚类的子空间聚类算法将该问题分为两个连续的阶段:首先从高维数据中学习数据的相似性矩阵,然后通过将谱聚类应用于所学相似性矩阵来推断数据的聚类隶属。通过定义一种新的数据自适应稀疏正则项,并将其与结构稀疏子空间聚类(SSSC)模型和改进的稀疏谱聚类(SSpeC)模型相结合,给出了一个新的统一优化模型。新模型利用数据的相似度和聚类指标的相互引导克服了SSpeC稀疏性惩罚的盲目性,并使得相似度具有了判别性,这有利于将不同子空间的数据分为不同类,弥补了SSSC模型只强制来自相同子空间的数据具有相同标签的缺陷。常用数据集上的实验结果表明,所提模型增强了聚类判别的能力,优于一些经典的两阶段法和SSSC模型。  相似文献   

18.
现有子空间聚类算法不能很好地平衡子空间数据的稠密性和不同子空间数据稀疏性的关系,且无法处理数据的重叠问题。针对上述问题,提出一种稀疏条件下的重叠子空间聚类(OSCSC)算法。算法利用L1范数和Frobenius范数的混合范数表示方法建立子空间表示模型,并对L1范数正则项进行加权处理,提高不同子空间的稀疏性和同一子空间的稠密性;然后对划分好的子空间使用一种服从指数族分布的重叠概率模型进行二次校验,判断不同子空间数据的重叠情况,进一步提高聚类的准确率。在人造数据集和真实数据集上分别进行测试,实验结果表明,OSCSC算法能够获得良好的聚类结果。  相似文献   

19.
针对软子空间聚类过程中簇间距离(簇间的分离程度)对聚类的影响程度不确定的问题,提出了一种基于簇内紧密度和簇间距离自适应软子空间聚类算法。算法以经典的k均值聚类算法框架为基础,在最小化各个子空间簇类的簇内紧密度的同时最大化各个子空间簇类的簇间距离。并且通过推导得到新的子空间聚类中心和特征加权的计算方式,克服了软子空间聚类对输入参数敏感的缺点,实现了算法的自适应学习,并且取得了较好的聚类效果。  相似文献   

20.
庞淑敬  彭建 《微计算机信息》2012,(1):161-162,172
针对数据集中若存在孤立点或者是噪声数据会影响模糊C均值聚类算法(FCM)的聚类性能问题,本文将离群点的辨认方法与FCM算法相结合,提出一种改进的FCM聚类算法。该算法有效地降低了孤立点或噪声数据对正常数据的影响,提高了FCM算法的聚类精度。将该算法在入侵检测系统中进行实验验证,通过与FCM算法进行对比分析,证明了该算法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号