首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
A conventional DC-AC inverter can only output either a single-phase AC voltage or a set of three-phase AC voltages. A new three-port DC-AC inverter which can simultaneously output a single-phase AC voltage and a set of three-phase AC voltages is proposed in this paper. This three-port DC-AC inverter is based on the three-port T-type multi-level power converter which is composed of three T-type power electronic legs, a decoupling transformer set, a filter inductor set, a single-phase filter capacitor, and a three-phase filter capacitor set. The DC port of the proposed power converter is connected to a DC power source to act as the input port, and the single-phase AC port and the three-phase AC port serve as two output ports to supply power to the single-phase load and the three-phase load, respectively. The zero-sequence transformer is used to decouple the single-phase and three-phase AC components, which are generated by the three T-type power electronic legs. The operation principle of this three-port DC-AC inverter is analyzed, and a hardware prototype is established to verify the performance of the proposed three-port DC-AC inverter. The experimental results are as expected.  相似文献   

2.
A boost DC-AC converter: analysis, design, and experimentation   总被引:20,自引:0,他引:20  
This paper proposes a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter. The main attribute of the new inverter topology is the fact that it generates an AC output voltage larger than the DC input one, depending on the instantaneous duty cycle. This property is not found in the classical VSI, which produces an AC output instantaneous voltage always lower than the DC input one. For the purpose of optimizing the boost inverter dynamics, while ensuring correct operation in any working condition, a sliding mode controller is proposed. The main advantage of the sliding mode control over the classical control schemes is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state response in the ideal case. Operation, analysis, control strategy, and experimental results are included in this paper. The new inverter is intended to be used in uninterruptible power supply (UPS) and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed, with no need of a second power conversion stage  相似文献   

3.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

4.
A multistage power CMOS-transmission-gate-based (CMOS-TG) quasi-switched-capacitor (QSC) boost DC-AC inverter is proposed and integrated with a boost DC-DC converter for a step-up application with AC or DC load. In this paper, using CMOS-TG as a bidirectional switch, the various topologies can be integrated in the same configuration for achieving two functions: boosting and alternating; boosting for getting a sinusoidal output in which the peak is the result of a many times step-up of the input; alternating to realize the positive/negative half sinusoidal of the output. The inverter does not require any inductive elements as inductor and transformer, so integrated circuit (IC) fabrication will be promising for realization. By using the state-space averaging technique, the large-signal state-space model of the inverter is proposed, and then both the static analysis and dynamic small-signal analysis are derived to form a unified formulation for inverter/converter. Based on this formulation, there are presented for theoretical analysis/control design, including steady-state power, conversion efficiency, voltage conversion ratio, output ripple percentage, capacitance selection, closed-loop control and stability, and total harmonic distortion (THD), etc. Finally, a six-stage QSC boost DC-AC inverter is simulated by PSPICE, and the simulations are discussed for some cases, including: 1) steady-state AC output, ripple percentage, and power efficiency; 2) transient response of the regulated inverter for load variation; 3) a practical capacitive load: electromagnetic luminescent (EL) lamp, and 4) efficiency, ripple percentage, and THD for different loads. The results are illustrated to show the efficacy of the proposed inverter.  相似文献   

5.
A 30 kVA high-frequency link converter, which consists of 6×5 kVA center-tap power block topologies operating in parallel, is considered for battery-fed DC-AC converter applications. Practical solutions for minimizing currents circulating between the different power blocks, avoiding transformer saturation in forced commutated center-tap topologies, and minimizing transistor-on losses are incorporated and illustrated by means of practical measurements and results. A simple single-capacitor snubber network, operating in parallel with a second-stage capacitor snubber, is used for these converter types. Typical applications include mobile and telecommunications uninterruptible power supply systems; high AC-voltage loads fed from photovoltaic or hybrid energy systems; and battery-fed, mobile, variable-speed AC and DC drives  相似文献   

6.
This paper presents analysis and design of a resonant AC/DC converter topology, suitable for use in an advanced single-phase, sine-wave voltage, high-frequency power distribution system of the type that was proposed for a 20 kHz space station primary electrical power distribution system. The converter comprises a transformer, a double-tuned resonant network comprising of series- and parallel-tuned branches, a controlled rectifier, and an output filter. Symmetrical phase control technique that generates fundamental AC current in phase with the input voltage is employed. Steady-state analysis of the converter in continuous current mode of operation is provided, and the performance characteristics presented. The proposed converter has close-to-unity rated power factor (greater than 0.98), a wide range of output voltage control (0%-100%), low total harmonic distortion in input current (less than 8%), and high conversion efficiency. Finally, selected experimental results of a bread-board converter are presented  相似文献   

7.
This paper presents the analysis of a DC-AC power converter using a zero-voltage-switching (ZVS) commutation cell. First, the authors show the cell applied to the buck power converter. The stages of operation are presented along with the main current and voltage equations. Next, they adapt the power converter to the regenerative-operation mode. Hence, the full-bridge power converter at low-frequency operation is connected in the DC-DC output stage (at high frequency). The main switches commute at zero voltage. The power converter operated at constant frequency with pulse-width modulation (PWM), and neither overvoltage nor additional current stress was observed by digital simulation. A design example and experimental results obtained by prototype, rated at 275 V and 1 kW, are also presented  相似文献   

8.
矩阵变流器的拓扑结构采取一个整流级连接逆变级,并且中间直流环节没有体积庞大的储能环节,使该系统具有较高的功率密度。同时该系统还具有高功率因数和良好输入输出波形等优点,适用于交流调速系统以及其他的控制场合。本文对基于间接矩阵变流器的调制策略进行了深入的研究,采用空间矢量调制策略对整流级和逆变级进行调制,并仿真验正其控制策略的正确性。  相似文献   

9.
This paper presents a novel power-balance control method for a wind–diesel generation feeding an isolated grid. The system is based on a variable-speed wind energy conversion system (WECS) connected to an ac load using a power converter. An energy storage system (ESS), connected to the ac load using an additional converter, is used to balance the power generated by the WECS with the load. In this paper, the vector control systems for both interfacing power converters are discussed; the control uses the WECS converter to regulate the ac load voltage and the ESS converter to regulate the power flow to achieve a power balance. A small signal model is used to design the control systems. Finally, the proposed control is implemented in a 2-kW experimental prototype and the experimental results are fully analyzed and discussed in the paper.  相似文献   

10.
A new scheme of the automotive high intensity discharge (HID) lamp ballast systems is proposed. The proposed scheme is consisted of the high frequency DC-DC converter and the low frequency DC-AC inverter as same as conventional HID ballast system. However this system separates the input voltage of the ignitor from DC link voltage using auxiliary winding, which results in the use of the lower voltage rating power devices for HID lamp ballast system compared with conventional system. As a result, proposed system has a lower cost or a higher efficiency. For the improvement of the efficiency, the proposed ballast controller using micro-controller unit (MCU), controls the frequency to operate the DC-DC converter in critical conduction mode. This paper presents the design and analysis of the proposed ballast and some experimental results.  相似文献   

11.
This paper presents a new state feedback based control strategy for a PWM AC to DC voltage type converter with phase and amplitude control. In this control strategy the state variables of the LC filter connected to the AC side of the converter are fed back to the PWM pattern generator, thereby eliminating a DC offset of the AC input currents as well as oscillations of the DC output current during transients. Computer simulation of the converter system with the proposed control strategy shows that the transient waveforms of AC input and DC output currents are improved greatly even if the damping effect of the AC side resistance can not be expected. The DC voltage regulation with good dynamic response is also achieved even if DC capacitance is substantially reduced. Experimental results from a low power laboratory model are also included to confirm the simulated results and to demonstrate the effectiveness of the proposed control strategy  相似文献   

12.
Because of lower voltage levels and smaller power ratings, the R/X ratio of commutation impedance in industrial AC/DC distribution systems is usually higher than that in HVDC transmission systems. Considerable discrepancies may therefore occur in industrial AC/DC power flow results, especially the reactive power consumption of converters, if the commutation resistances of the converters are neglected. To describe the effects of commutation impedance on converter operations and to precisely relate the fundamental line current and DC output current of the converter, a detailed model of the bridge converter with commutation impedance for use of Newton-Raphson power flow studies in industrial AC/DC power systems is derived in this paper. A coal mine power system and a DC electrified transit railway system with regenerative braking function, a part of Taipei Rapid Transit Systems under planning, have been analyzed to show the improved accuracy and good convergence characteristics of the developed Newton-Raphson power flow formulation with the proposed converter model  相似文献   

13.
A reversible step-up/step-down AC-DC converter is presented in this paper. It is a fifth-order system, capable of managing power transfer from a DC source to an AC one, with any ratio between the DC and the AC voltage levels, and producing a sinusoidal output current, using only one power processing stage. By reversing the energy flow this circuit becomes a high power factor rectifier. This reversion can be obtained simply by inverting the reference AC current. The system is analyzed as the connection of two independent lower order subsystems, controlled by sliding mode with decentralised switching scheme. Experimental results from a 100 W prototype operating in both senses, as inverter and as rectifier, are shown to confirm the mathematical analyses and simulations  相似文献   

14.
15.
葛文爽 《电子测试》2021,(5):117-118
变频器是利用电力半导体器件的通断作用将电压和频率不变的工频交流电源转化成电压和频率可调的交流电源,供给交流电动机实现软启动、变频调速等功能的电能变换控制装置。变频器交流调速系统具有良好的调速性能,而且运行效率高、可靠性强、节能效果也较为理想,是全球范围内公认较为先进的调速系统。而PLC是一种程序系统,把二者结合在一起,可实现变频器交流电机调速控制系统的自动化、科技化、智能化的控制。本文将设计探究基于PLC的变频器多段速控制,通过总体方案确定功能要求,选择软硬件,完成输入输出分配及接线端子的连接,最后通过变频器的参数设定和PLC的程序设计完成交流电机多段速控制的操作。  相似文献   

16.
Parallel processing inverter system   总被引:5,自引:0,他引:5  
A novel method of instantaneous voltage and power balance control of a parallel processing inverter system is proposed. It consists of a high-speed switching PWM (pulsewidth modulated) inverter with an instantaneous current minor loop controller, a voltage major loop controller, and a power balance controller. This system realizes the following functions with only one inverter: constant AC output voltage control with reactive power control, active filtering to absorb load current harmonics, DC voltage and current control as AC-to-DC converter, and uninterruptible power supply (UPS) for stand-alone operation. This system covers a wide application range, including UPS systems, new energy systems, and active filters with voltage control functions  相似文献   

17.
介绍了一种单片机数字控制车用前照明高强度气体放电灯(high intensity discharge,HID)电子镇流器。镇流器系统主要由高频DC/DC开关电源、DC/AC逆变器、高压启动电路和单片机控制电路组成。它通过单片机软件编程,实现精确的数字控制,确保HID灯启动复杂的时序控制和恒功率控制过程,而且可以很好地处理各种故障模式,具有输入过压/欠压保护,输入反接保护,输出短路、开路保护等功能。  相似文献   

18.

A new DC–DC converter capable of working with more than one source for harvesting energy from clean energy sources is proposed. Key features of this proposed converter are single inductor and reduced total number of components. In addition the converter has reduced stresses and power losses. Dual input and output modes, with its operation and steady-state analysis are discussed. Comparative study of the topologies given in literature with a proposed topology for parameters considered like the number of components and voltage gain is presented. Compatibility of the proposed converter is proved with reduced losses using loss distribution analysis of the converter and it is more reliable for energy system in telecom applications, which is validated using reliability analysis, is also highlighted. Finally, to substantiate the working of the non isolated DC–DC converter considered the test results are presented.

  相似文献   

19.
基于脉宽调制(PWM)的AC/DC功率双向变流器作为主要功率变换电路,在许多实际应用的电力电子系统中得到广泛应用,如统一电能质量调节器中的有源电力滤波器系统,交-直-交变频调速系统中的整流或逆变部分,电源系统的逆变器,再生能源并网发电系统中的逆变器以及灵活交流输电系统中的统一潮流控制器等等。在各种应用系统中,人们建立其数学模型进行系统分析和控制设计以满足系统目标。PWM整流器数学模型的研究是PWM整流器及其控制技术研究的基础,本文研究介绍了目前较为流行的四种建模方法,并分别分析其特点及应用。  相似文献   

20.
This paper proposed an isolated bridgeless AC–DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input–output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号