首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以L-精氨酸(L-Arginine)为结构导向剂,利用水热法合成由纳米片组装成的分等级β-Ni(OH)_2花状微球。采用XRD、SEM、TEM及N_2吸附脱附对样品的微观结构、表面特性及比表面积进行了表征,深入分析其合成机理,并通过循环伏安、充放电、交流阻抗等测试考察了该电极材料的电化学性能。结果表明,分等级β-Ni(OH)_2花状微球具有优异的电化学电容特性,在电流密度为5 m A/cm~2时,β-Ni(OH)_2的比电容值高达1 048.5 F/g,500圈充放电循环后,其比电容仅衰减了9.2%,可见所制得样品是一种理想的超级电容器电极材料。  相似文献   

2.
以醋酸镍和氨水为原料,水热法制备了微纳米花瓣片状β-Ni(OH)_2粉体。用TG-DTA、FT-IR、XRD、SEM分别对合成的样品进行热分析,物相和形貌分析。研究结果表明:反应温度在180℃和200℃下可制备得纯相β-Ni(OH)_2;SEM照片表明制备的粉体为球形颗粒,表面呈花瓣片层状,花瓣厚度均匀结构清晰。通过研究反应温度对β-Ni(OH)_2微观形貌的影响,探讨了β-Ni(OH)_2花瓣片状微球的生长机制。  相似文献   

3.
《应用化工》2022,(2):265-269
采用化学沉淀法在室温下合成了一种α-Ni(OH)_2纳米薄膜,探讨了合成温度及表面活性剂的影响。采用XRD、SEM、TEM和BET对材料进行表征。结果表明,合成温度及表面活性剂的种类对产物组成和形貌有较大影响,室温下,样品为厚度约2 nm的薄膜,带有较多的褶皱,比表面积206.8 m2/g;50℃下合成的产物表面褶皱开始消失,且不均匀,有颗粒状物质生成,80℃下的产物褶皱状结构消失,主要为团聚在一起的颗粒组成。同时,将α-Ni(OH)_2纳米膜制成单电极,循环伏安和恒电流充放电测试表明,α-Ni(OH)_2纳米膜具有较好的电化学性质,当充放电电流密度为1 A/g时,电极材料的比容量达到539.6 F/g。  相似文献   

4.
《应用化工》2016,(2):265-269
采用化学沉淀法在室温下合成了一种α-Ni(OH)_2纳米薄膜,探讨了合成温度及表面活性剂的影响。采用XRD、SEM、TEM和BET对材料进行表征。结果表明,合成温度及表面活性剂的种类对产物组成和形貌有较大影响,室温下,样品为厚度约2 nm的薄膜,带有较多的褶皱,比表面积206.8 m~2/g;50℃下合成的产物表面褶皱开始消失,且不均匀,有颗粒状物质生成,80℃下的产物褶皱状结构消失,主要为团聚在一起的颗粒组成。同时,将α-Ni(OH)_2纳米膜制成单电极,循环伏安和恒电流充放电测试表明,α-Ni(OH)_2纳米膜具有较好的电化学性质,当充放电电流密度为1 A/g时,电极材料的比容量达到539.6 F/g。  相似文献   

5.
晶态氢氧化镍[Ni(OH)2]在碱性电解液中易发生相变,影响其电化学性能。文中采用微乳液快速冷冻共沉淀法制备Nd3+和Cu2+复合掺杂非晶态纳米Ni(OH)2粉体材料,并对其结构形貌及物理特性进行表征分析。结果表明,制备出的非晶态Ni(OH)2样品材料,微结构含有较多结晶水,物相近似球形,粒径大小在20—30nm。对样品电极材料的电化学性能测试发现,掺杂Nd3+和Cu2+的摩尔比为2∶1时,所制备的样品材料合成镍电极,并组装成MH-Ni模拟电池,在恒电流80mA/g下充电6h,40mA/g放电,终止电压为1.0V的充放电条件下,放电比容量高达348.0mA.h/g,放电中值电压为1.2723V,同时样品电极材料的氧化还原可逆性较好,电极过程的电化学阻抗较小。电化学性能优于目前MH-Ni生产应用的晶态β-Ni(OH)2电极材料。  相似文献   

6.
纳米氢氧化镍掺杂镍电极的电化学性能   总被引:1,自引:0,他引:1  
介绍了一种通过合成草酸镍,进而生成纳米Ni(OH)2的新的合成路线.X射线衍射以及红外光谱测试结果表明,得到的Ni(OH)2为β型.通过透射电镜观察到,合成的Ni(OH)2样品呈针状,长度在100~200 nm之间,直径为10~20 nm.对掺杂质量分数8%纳米级氢氧化镍的电极的电化学性能进行了测试,可以发现:放电容量比未掺杂的球形氢氧化镍电极提高了9.6%,且经过10次循环以后放电容量仍能达到原来的94%.  相似文献   

7.
采用六水合硝酸镍为镍源,通过一步水热法制备了Ni(OH)_2/活性碳纤维(ACF)复合材料,并对材料的结构和电化学性能进行研究。结果表明:Ni(OH)_2主要以纳米片结构生长在ACF表面,当金属离子Ni~(2+)浓度为10 mmol/L时,纳米片在ACF表面形貌规整、分散均匀,厚度约为20 nm,且纳米片之间具有丰富的孔隙结构;复合材料其相对ACF(1043 m~2/g)具有更高的比表面积,达到了1352 m~2/g;电化学性能测试表明:复合材料在电流密度0.5 A/g时的比电容高达905 F/g,在电流密度5 A/g时的比电容仍有630 F/g,通过循环充放电1000次,其比电容保持率仍有85.7%,表明复合材料具有较好的倍率性和循环稳定性。  相似文献   

8.
采用尿素分解法制备了Al代α-Ni(OH)2粉体材料,主要考察了合成过程中液相阴离子(SO42-和NO3-)对Al代α-Ni(OH)2微观结构和电化学性能的影响。XRD分析表明液相中的NO3-有利于提高Al代α-Ni(OH)2的结晶度,并且合成的Al代α-Ni(OH)2具有较大的层间距。FT-IR和TGA测试表明液相阴离子在合成过程中会嵌入Al代α-Ni(OH)2的层间,进而影响其晶体结构、含水量和热稳定性。SEM图像表明尿素分解法制备的Al代α-Ni(OH)2是具有明显次级结构的球形颗粒,并且颗粒的次级结构形状与液相阴离子密切相关。采用CV、EIS和充放电测试表征了合成样品的电化学性能,发现液相含有NO3-条件下合成的Al代α-Ni(OH)2具有相对较好的电化学反应可逆性和高的放电比容量。  相似文献   

9.
以六水氯化钴、氢氧化钠及氨水为原料,在室温且不使用表面活性剂的条件下制备了纳米花状α-Co(OH)_2球形颗粒;用X射线衍射仪(XRD)、红外光谱仪(FT-IR)和场发射扫描电子显微镜(FESEM)表征了α-Co(OH)_2纳米花的组分、结构和形貌,用差示扫描量热仪(DSC)研究了α-Co(OH)_2纳米花对高氯酸铵(AP)热分解性能的影响。结果表明,α-Co(OH)_2为球形颗粒,粒径大小均一,是由纳米片组成的花状结构,纳米花的直径为300~400nm;当α-Co(OH)_2纳米花质量分数为3%时,AP的分解温度为281℃,与纯AP相比提前了158℃,放热量达1 502J/g,表明α-Co(OH)_2纳米花对AP的热分解具有优异的催化作用。  相似文献   

10.
以NiCl2·6H2O和NH3·H2O为原料,采用简单的水热法,借助表面活性剂CTAB成功合成了β-Ni(OH)2。研究表明,该材料具有以纳米片相互穿插构成的花状分层微米球结构,比表面积高达45 m2?g-1。电化学测试表明材料具有良好的电化学性能,在3 A?g-1的充放电电流密度下,Ni(OH)2的比容量达到505 C?g-1,在超级电容器领域具有良好的应用前景。  相似文献   

11.
以Ni(NO3)2水溶液为电解液,通过电沉积法在泡沫镍基体上原位生长了Ni(OH)2薄膜。采用X-射线衍射、傅里叶变换红外光谱、热重分析和场发射扫描电子显微镜对样品的微观结构进行了分析,发现该样品是具有片状纳米次级结构的α-Ni(OH)2,其内部含有一定量的结晶水和层间阴离子;采用循环伏安、交流阻抗和充放电测试研究了样品的嵌锂性能,结果表明该样品具有很高的嵌锂活性和良好的倍率性能,在50 m A/g充放电电流密度下样品的首次放电比容量为1 435 m Ah/g,第二圈放电比容量为970 m Ah/g,即使是在1 000 m A/g的高电流密度下样品仍具有281.9 m Ah/g的放电比容量。  相似文献   

12.
采用尿素均相沉淀法制备了La掺杂Al代α-Ni(OH)2粉体材料,表征了其微观结构和形貌,并测试了样品作为MH-Ni电池正极活性材料的电化学性能.结果表明,制备的样品颗粒呈类球形,与Al代α-Ni(OH)2相比,结晶度增强,具有更大的晶格层间距,电极反应具有更好的可逆性和较小的电化学阻抗,在0.1C下放电比容量达403.04mA·h/g,放电中值电压较高并稳定于1.29V,1C下放电比容量达343.47mA·h/g,充放电循环50次容量保持率为90.31%,显示了良好的较大倍率放电性能.  相似文献   

13.
氢氧化镍广范应用于镍系列二次碱性电池正极材料中,镍电极的容量是制约其发展的一个重要因素。通过共沉淀法制备了掺杂锰的氢氧化镍。研究表明,掺杂锰元素可以形成同时存在α-Ni(OH)2和β-Ni(OH)2的混合晶体结构,镍电极容量提高到303mAh/g,镍电极的膨胀率降低,是一种前景广阔的正极材料。  相似文献   

14.
本研究以氧化石墨烯(GO)为模板负载氢氧化镍(Ni(OH)_2)和氢氧化钴(Co(OH)_2)纳米粒子,并分别熔融共混到聚丙烯(PP)中,利用PP原位碳化方法成功制备出GO负载碳球纳米杂化材料。利用X射线衍射(XRD)和拉曼波谱分析(Raman)对合成的Ni(OH)_2、Co(OH)_2、GO负载Ni(OH)_2和GO负载Co(OH)_2进行表征。采用透射电子显微镜(TEM)、XRD和Raman等对合成的石墨烯负载碳球纳米杂化材料的形貌结构和物理性质进行表征。结果表明:利用PP原位碳化可成功制备两种不同类型的石墨烯负载碳球纳米杂化材料。  相似文献   

15.
为了考察Ni(OH)_2颗粒粒径与形貌对镍电极性能的影响,利用超声波沉淀法制备出了粒径小且分布均匀的球形氢氧化镍,研究了反应体系中超声波强度对氢氧化镍颗粒形貌的影响。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、粒度分析、循环伏安特性曲线、倍率充放电技术对制备的氢氧化镍材料进行表征与测试。结果表明,超声波强度对氢氧化镍颗粒形貌有显著影响,实验确定适宜的超声波强度在216 W左右;粒度分析显示制备的球形氢氧化镍颗粒粒度在10μm左右。XRD测试证明制备的氢氧化镍为β-Ni(OH)_2;循环伏安特性曲线和倍率充放电测试发现,该材料具有良好的循环保持率,在0.4 C充电3 h,静置3 min,1 C放电至1.2 V的测试条件下循环30次后循环保持率为89%,最大放电比容量达260 m Ah/g。  相似文献   

16.
本文在2.3 V电压、30 mA电流、120 s沉积时间条件下,采用控电位电沉积方法在泡沫镍基体上沉积Co(OH)_2制备了复合电极材料并研究了其超电容性能。结果表明:所获得的复合电极材料表面为纳米片层状Co(OH)_2,且保留了泡沫镍的三维网状结构。这一结构促进了电极活性物质与电解液之间的充分接触以及离子在电极体相中的吸附与脱附,使复合材料具有优异的超电容特性,比电容值高达975.8 F/g(50 mV/s),内阻仅为0.74Ω。  相似文献   

17.
以氯化镍为镍盐来源,尿素为沉淀剂,采用超声法快速地合成了由纳米片组装而成的花状Ni(OH)2微球。探讨了超声时间和功率、反应物配比等因素对Ni(OH)2电化学性能的影响。结果表明,当超声时间为30 min,超声功率为500 W,镍盐和尿素的配比为1/4时,所得Ni(OH)2样品的电容性能最佳,10 mA下恒流充放电时,其放电比电容量高达1 906 F/g。  相似文献   

18.
以水热法合成碱式碳酸镍前驱体,通过焙烧制备高比表面积的球形氧化镍,探索了合成过程中碱式碳酸镍晶型、粒径、形貌的调控规律,研究了前驱体热性能及其焙烧机制,并测定了球形氧化镍的孔径和比表面积。结果表明,球形碱式碳酸镍合成的工艺参数为:T=100℃、t=10 h、p H=8、n[Ni(NO_3)_2]∶n[CO(NH_2)_2]=1∶2,加入共溶剂有助于调控其形貌和分散程度,在乙醇体积分数为50%的溶液中,合成的球形碱式碳酸镍结构规整,呈均匀的球形结构,粒径为5μm。热重实验结果表明,碱式碳酸镍500℃分解完全,其优化焙烧参数为:焙烧温度为500℃、焙烧时间为1 h,此时得到的NiO呈立方晶相,为分散均匀的球状,粒径为5μm,其比表面积和孔径分别为81. 92 m~2/g和30. 18 nm,在孔径保持基本不变的情况下,比普通氧化镍比表面积增大了1倍,孔容提高了2. 5倍。  相似文献   

19.
以葡萄糖水溶液为反应介质,在氧化钙消化成氢氧化钙的过程中,加入苯乙烯单体和引发剂,采用原位悬浮聚合法成功制备了聚苯乙烯(PS)包覆氢氧化钙[Ca(OH)2]形成Ca(OH)2/PS微球.考察了葡萄糖水溶液、苯乙烯、稳定剂聚乙烯醇以及反应温度对单分散Ca(OH)2/PS微球的粒径及粒子分散系数的影响,得出较佳合成条件.在较佳条件下制备的Ca(OH)2/PS微球平均粒径为30~40 μm,粒子分散系数为0.08~0.10.扫描电镜照片表明,Ca(OH)2/PS具有良好的球形度,表面光滑、无破损.红外光谱表征显示,产物为Ca(OH)2/PS微球.  相似文献   

20.
以Ni(NO3)2·6H2O和NaOH为原料采用化学沉淀法制备了Ni(OH)2电极材料。采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了样品的微观结构,结果表明该样品是具有片状纳米次级结构的β-Ni(OH)2。采用循环伏安(CV)和电化学充放电测试研究了该β-Ni(OH)2样品的储锂性能,结果发现该样品作为锂离子电池负极材料具有非常高的储锂活性,在50 m A·g-1电流密度下其第3次循环放电比容量高于1550m A·h·g-1;样品电极中的碳含量对其循环性能和倍率性都有显著影响,通过交流阻抗(EIS)测试分析了样品电极中碳含量的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号