首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
-SiAION--SiC composites containing up to 12 wt% -SiC were prepared by pressureless sintering. The strength of composites at room temperature remained relatively unchanged, whereas strength at 1200 °C increased for composites. The fracture toughness (K IC) for composites was higher than that for -SiAION ceramics. The maximum value was 5.4 MPa m1/2 for 6 wt% -SiC, and this was an improvement of 15% in comparison with -SiAION ceramics. From SEM observations, an improvement inK IC values was attributed to crack deflections and branching-off of cracks. Intra-granular fractures were frequently observed in -SiAION. From TEM observations, -SiAION crystals were nanocomposites, within which existed the fine crystals in -SiAION crystal. For composite, -SiAION and -SiC crystals were directly in contact. The mismatching zone was observed in -SiC.  相似文献   

2.
The formation of-SiC fibres with SiO2-C-NaF(AIF3) components was investigated. It was found that the formation of a longer-SiC fibre was governed by the mole ratio of C/SiO2 or C/NaF. Using a mole ratio for C/SiO2 or C/NaF of 3 or more,-SiC fibres of length 3 mm were prepared in a closed system. On the other hand, short-SiC fibres were obtained in an open system.-SiC fibres prepared under the various experimental conditions were stable when heated in a high-concentration acidic solution such as HCl or H2SO4, and in an alkaline solution such as NaOH.  相似文献   

3.
Fibres formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibres pyrolysed to 1400°C revealed primarily amorphous glasses whose conversion to -SiC is a function of both blend composition and pyrolysis conditions. Formation of -SiC crystallites within the glassy phase is favoured by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibres can serve as model systems to gain understanding of the silsesquioxane pyrolysis behaviour, and therefore are useful in the development of polysilsequioxane-derived ceramic matrices and coatings as well.  相似文献   

4.
Polycarbosilanes containing titanium alkoxide as pendant groups (atom ratio Ti/Si = 0.07 and 0.15) were synthesized. These polymers were melt-spun and then heat-treated in a vacuum, in oxygen or ammonia gas flow, resulting in Si-Ti-C-O, Si-Ti-0 and Si-Ti-O-N fibres, respectively. The pyrolysis process of the polymer is discussed in connection with the mechanical properties and the structure of the fibre. At high heat-treatment temperatures, -SiC and TiC (in Si-Ti-C-O fibre), anatase (in Si-Ti-O fibre) and TiN (in Si-Ti-O-N fibre) crystallized, which may be closely related to the decomposition of the Si-O-Ti bond in the fibre.  相似文献   

5.
The creep, thermal expansion, and elastic modulus properties for chemically vapour deposited SiC fibres were measured between 1000 and 1500°C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 800 MPa. The controlling activation energy was 480 ± 20 kJ mol–1. Thermal pretreatments near 1200 and 145O° C were found to significantly reduce fibre creep. These results coupled with creep recovery observations indicate that below 1400°C fibre creep is anelastic with negligible plastic component. This allowed a simple predictive method to be developed for describing fibre total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fibre creep is the result of -SiC grain boundary sliding, controlled by a small percentage of free silicon in the grain boundaries.  相似文献   

6.
The kinetics of the carbothermic reduction of SiO2 by carbon to produce -SiC from a homogeneous organic precursor has been investigated over the temperature range 1500 to 1800 °C in nitrogen by the use of a high-temperature thermobalance. The kinetic behaviour differed significantly from that of the heterogeneous reaction of SiO2 and carbon particles. The weight-loss curves could be fitted well by the Avrami-Erofe'ev equation with an exponent of 1.5. The result was interpreted as showing instantaneous nucleation in a homogeneous matrix followed by the diffusion-controlled growth of -SiC. The obtained activation energy of 391 kJ mol–1 was consistent with the assumption that the reaction is controlled by the diffusion of carbon through the amorphous matrix to the growing surface of -SiC.  相似文献   

7.
Chemical vapour deposition (CVD) of the SiH4 + CH4 + H2 system was applied to synthesize-silicon carbide powders in the temperature range 1523 to 1673 K. The powders obtained at 1673 K were single-phase-SiC containing neither free silicon nor free carbon. The powders obtained below 1623 K were composite powders containing free silicon. The carburization ratio (SiC/(SiC + Si)) increased with increasing reaction temperature and total gas flow rate, and with decreasing reactant concentration. The average particle sizes measured by TEM ranged from 46 to 114nm, The particle size increased with the reaction temperature and gas concentration but decreased with gas flow rate. The-SiC particles obtained below 1623 K consisted of a silicon core and a-SiC shell, as opposed to the-SiC particles obtained at 1673 K which were hollow. Infrared absorption peaks were observed at 940 and 810 cm–1 for particles containing a silicon core; whereas a single peak at about 830 cm–1 with a shoulder at about 930 cm–1 was observed for the-SiC hollow particles. The lattice parameter of-SiC having a carburization ratio lower than 70 wt%, was larger than that of bulk-SiC and decreased with the increasing carburization ratio. However, when the carburization ratio exceeded 70 wt%, the lattice parameter became approximately equal to that of bulk-SiC.  相似文献   

8.
The effect of seeding on microstructural development and fracture toughness of -SiC with an oxynitride glass was investigated by the use of morphologically rodlike -SiC whiskers. A self reinforced microstructure consisting of rodlike -SiC grains and equiaxed -SiC matrix grains was obtained by seeding 1–10 wt% SiC whiskers, owing to the epitaxial growth of -SiC from the seed whiskers. Further addition of seeds (20 wt%) or further annealing at higher temperatures led to a unimodal microstructure, owing to the impingement of growing seed grains. By seeding -SiC whiskers, fracture toughness of fine-grained materials was improved from 2.8 to 3.9–6.7 MPa · m1/2, depending on the seed content.  相似文献   

9.
Synthesis of beta silicon carbide powders using carbon coated fumed silica   总被引:1,自引:0,他引:1  
The synthesis of beta silicon carbide (-SiC) powders by carbothermic reduction of carbon coated silica and silica mixed with carbon black was investigated. The production of -SiC powders by using carbon coated silica consists of two steps. The first step is to prepare the carbon coated silica precursor by coating fumed silica particles with carbon by pyrolytic cracking of a hydrocarbon gas (C3H6). This provides intimate contact between the reactants and yields a better distribution of carbon within the fumed silica. Fumed silica was also mechanically mixed with carbon black for comparison. Both starting mixtures were reacted in a tube furnace for 2 h at temperatures of 1300°C to 1600°C in 1 l min-1 flowing argon. The reaction products were characterized using weight loss data, X-ray diffraction (XRD), a BET surface area analyser, oxygen and free carbon analysis and transmission electron microscopy (TEM). The carbon coating process resulted in a more complete reaction, purer product and high yield SiC powders with very little agglomeration at temperatures of 1500°C and 1600°C. The -SiC powders produced at 1600°C for 2 h in argon gas flow have oxygen content of 0.3 wt%, a very fine particle size 0.1–0.3 m and uniform shape. © 1998 Chapman & Hall  相似文献   

10.
Strength variations of reaction-sintered SiC were examined to determine the effect of the volume fraction of fine-grained -SiC domain. The fracture strength significantly decreased with an increase in the volume fraction of the -SiC domain, and eventually fell to the strength of the -SiC domain alone. Furthermore, a substantial difference in the crack deflection was found between the indentation microfracture formed in a structure containing fine-grained -SiC and that in the typical structure of reaction-sintered SiC. This showed that the fracture toughness decreased on account of the -SiC layer.  相似文献   

11.
Thermal stability of SiC fibres (Nicalon®)   总被引:1,自引:0,他引:1  
The degradation behaviour of Nippon Carbon Co. SiC fibres (Nicalon®) after heat treatment in various environments was studied. Regardless of the heat-treatment conditions, the Nicalon® fibre strength degraded when the fibres were subjected to temperatures higher than 1200° C (temperatures below 1200° C were not investigated). This degradation is associated with the evaporation of CO from the fibres as well as with-SiC grain growth in the fibres.  相似文献   

12.
The conversion to ceramic of a commercial polycarbosilane (PCS) under various pyrolysis conditions has been investigated. The products of pyrolysis have been characterised by solid state 29Si and 13C NMR spectroscopy and X-ray diffraction (XRD). Some of the phases identified in the present study were found to differ from those reported previously, particularly in the earlier literature. Oxidation-cured PCS, when pyrolyzed up to 1400 °C in argon, generally produced silicon oxycarbide (SiO x C y ) as the second major phase with -SiC as the major phase, and smaller amounts of free carbon. With increasing temperature above 1200 °C, the silicon oxycarbide phase decomposed to give -SiC. Silica (SiO2) was also found to evolve from this silicon oxycarbide phase. Loss of some of the silica, probably by reaction with carbon, was found at 1400 °C, possibly yielding SiO, CO and SiC. At 1500 °C, crystalline -cristobalite was found as a minor phase with -SiC as the major phase and a lower amount of free carbon. Pyrolysis in vacuum leads to production and crystallization of -SiC at a lower temperature than required if pyrolyzed in argon flow. After pyrolysis at 1600 ° in vacuum, the cured PCS converted to almost stoichiometric -SiC.  相似文献   

13.
Structural evolutions from polycarbosilane to SiC ceramic   总被引:5,自引:0,他引:5  
The pyrolysis process of a polycarbosilane into a microcrystalline silicon carbide ceramic has been followed up to 1700 ° C mainly by means of solid state29Si and13C nuclear magnetic resonance, transmission electron microscopy and X-ray diffraction analysis. A structural model has been proposed for the amorphous silicon carbide phase that is formed during the pyrolysis process. The ceramic obtained at high temperature is formed by a mixture of -SiC and -SiC; however, some difficulties in the identification of the crystalline phases have been pointed out.  相似文献   

14.
Silicon carbide (SiC) powders were prepared by chemical vapour deposition (CVD) using (CH3)2SiCl2 and H2 as source gases at temperatures of 1273 to 1673 K. Various kinds of SiC powders such as amorphous powder, -type single-phase powder and composite powder were obtained. The composite powders contained free silicon and/or free carbon phases of about a few nanometres in diameter. All the particles observed were spherical in shape and uniform in size. The particle size increased from 45 to 130 nm with decreasing reaction temperature and gas flow rate, as well as with increasing reactant concentration. The lattice parameter of the -SiC particles decreased with increasing reaction temperature. All the lattice parameters were larger than those of bulk -SiC.  相似文献   

15.
The compressibilities of the a- and c-axes for sodium - and -aluminas were determined up to 10 GPa from the pressure dependence of powder X-ray diffraction measured at room temperature using synchrotron radiation as an X-ray source. Powders of sodium - and -aluminas which were prepared from grinding synthesized single crystals were used as the specimens for X-ray diffraction. The compressibilities of - and -aluminas are 1.5 ± 0.2 ×10–12 and 1.7 ± 0.2 × 10–12 Pa–1 for the a-axis and 2.9 ± 0.2x10–12 and 1.6 ± 0.2 ×10–12 Pa–1 for the c-axis, respectively. For the c-axis, the compressibility of -alumina is larger than that of -alumina. This experimental fact is explained by the different stacking of oxygen layers and the different content in sodium ion between - and -aluminas.  相似文献   

16.
Effect of atmosphere on pyrolysis of Nicalon   总被引:1,自引:0,他引:1  
The pyrolytic behaviour of Nicalon under a N2 atmosphere was investigated at temperatures from 1673 to 1973 K, and was compared with that under an Ar atmosphere. The pyrolytic rate was measured by thermogravimetry, and heat-treated Nicalon was examined by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy and tensile testing. The pyrolytic rate was smaller in N2 than in Ar. The nitrided case retarded the crystallization into -SiC and retained its high strength. The effectiveness of the nitrided case disappeared on heating in Ar. The strength was related to the size of the -SiC crystal in Nicalon.  相似文献   

17.
Nanosized silicon carbide powders of high purity and low oxygen content have been prepared by thermal chemical vapour deposition (CVD) of dimethyldichlorosilane at pyrolytic temperatures, 1100–1400 °C. The nanosized silicon carbide particles prepared at 1400 °C consist of small crystallites of -SiC arranged randomly in the particles. At pyrolytic temperature below 1300 °C, the particles consist of amorphous phase and -type SiC crystallites. The average particle size changed from 70 nm to 40 nm and the average size of the -SiC crystallite changed from 7.3 nm to 1.8 nm depending on the pyrolysis conditions. The C/Si molar ratios of the product powders changed from 0.5 to 1.07 with the CVD conditions. The near theoretical values of C/Si molar ratio of the product powders within 0.95–1.05 can be controlled by CVD conditions such as pyrolytic temperature and reactant concentration. Finally, the product powders were characterized by chemical analysis, X-ray diffraction, electron microscopy, and infrared spectroscopy.  相似文献   

18.
A copolymer of polycarbosilane and perhydropolysilazane was obtained by reacting polycarbosilane with titanium n-butoxide and perhydropolysilazane. Titanium n-butoxide and perhydropolysilazane were essential for the polymer to show a thermosetting property. The thermosetting copolymers were converted into silicon carbide-based ceramics by pyrolysis in a stream of nitrogen to 1000 °C with about 80 wt% ceramic yield. The main phase of the pyrolysis product at 1500 °C in nitrogen was small crystallite -SiC. Elemental carbon, based on rule-of-mixtures composition, in the final ceramics could be reduced by varying the ratio of polycarbosilane/perhydropolysilazane. The copolymer was dry spun and pyrolysed to produce ceramic fibre. Pyrolysis in nitrogen to 1500 °C yielded a silicon carbide-based fibre with low oxygen and low elemental carbon content. A tensile strength of 1.8 GPa and an elastic modulus of 220 GPa were obtained for the fibre which ranged from 10–12 m in diameter. Crystallization to -Si3N4, -SiC, and -Si3N4 proceeded on annealing in nitrogen at 1700 °C for 1 h.  相似文献   

19.
The microstructure of Nicalon-reinforced borosilicate glass was studied using scanning acoustic microscopy (SAM) and scanning electron microscopy (SEM), Acoustic micrographs exhibited high contrast, and the formation of Rayleigh-wave-interference fringes both within and around fibres allowed thein-situ-fibre and matrix elastic moduli to be estimated. The matrix was found to have undergone partial devitrification resulting in the formation of cristobalite. The presence of a high volume fraction of reinforcing fibres was found to have little effect on cristobalite formation and distribution. The thermal expansion mismatch between -cristobalite and the devitrified glass matrix and the /-cristobalite phase change were found to give rise to extensive microcracking around individual cristobalite grains and partial fibre/matrix debonding.  相似文献   

20.
The transformation kinetics and microstructural development of liquid phase sintered silicon carbide ceramics (LPS-SiC) are investigated. Complete densification is achieved by pressureless and gas pressure sintering in argon and nitrogen atmospheres with Y2O3 and AlN as sintering additives. Studies of the phase transformation from to -SiC reveals a dependency on the initial -content and the sintering atmosphere. The transformation rate decreases with an increasing -content in the starting powder and in presence of nitrogen. The transformation is completely supressed for pure -SiC starting powders when the additive system consists of 10.34 wt% Y2O3 and 2.95 wt% AlN. Materials without phase transformation showed a homogeneous microstructure with equiaxed grains, whereas microstructures with elongated grains were developed from SiC powders with a high initial /-ratio (>1:9) when phase transformation occurs. Since liquid phase sintered silicon carbide reveals predominantly an intergranular fracture mode, the grain size and shape has a significant influence on the mechanical properties. The toughness of materials with platelet-like grains is about twice as high as for materials with equiaxed grains. Materials exhibiting elongated microstructures show also a higher bending strength after post-HIPing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号