首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
利用一步法制备了MgO/Al2O3/MCM-41吸附剂,采用XRD、氮吸附和CO2-TPD等手段表征了材料的结构特征和表面性质。研究发现,负载前后样品都具有有序的介孔孔道结构,介孔材料的孔道仍高度有序,对CO2的吸附能力较纯MCM-41有明显的改善。当负载量为20%时,对CO2的吸附量最大。吸附量经过3次循环测试,未见明显下降。  相似文献   

2.
在中孔SiO2(SG)和微孔Hβ分子筛(Si/Al=25、60、80)组成的复合载体上,制备了多功能Co基费托合成催化剂,考察了其合成航空燃油类烃(C8~C18)的性能。XRD、FTIR、H2-TPR、N2-物理吸附研究表明:Hβ的引入,使得Co/SG/Hβ催化剂具有一定酸性和微孔结构。随分子筛硅铝比的降低,催化剂红外图谱的特征波数向低波数移动,酸性有所提高,中孔SiO2消弱了其酸性及载体与金属粒子相互作用,提高了Co分散和还原度及加氢活性。Hβ的微孔结构和酸性促进了初级产物裂解及异构化反应,提高了异构烃类选择性。Co/SG/Hβ(80)催化剂较大的比表面积和微孔体积及适当的酸性中心是其高活性(CO转化率95.7%)及高航空燃油类烃选择性(42.3%,其中异构烃为27.6%)的关键因素。  相似文献   

3.
曹静  焦剑  赵莉珍 《材料导报》2016,30(18):50-55
研究了有机胺固载3D蠕虫状介孔二氧化硅MSU-J的表面结构、介孔类型、氮含量以及吸附温度对CO_2吸附性能的影响,并采用傅里叶红外光谱、透射电镜、N_2吸附/脱附、热重分析和元素分析等方法研究了介孔结构和CO_2吸附性能。结果表明,采用浸渍法对MSU-J进行氨基改性的效率明显高于接枝法,产物具有较高的CO_2吸附量,且水化处理后介孔MSU-J表面的Si-OH得以再生使氨基的负载量增加,CO_2吸附量从43.2mg/g增加到52.6mg/g。与SBA-15相比,氨基改性后MSU-J的CO_2吸附量从28.4 mg/g增加到154.5 mg/g,远大于前者的23.4~65.4mg/g。吸附温度对MSU-J吸附CO_2的影响很大,且随吸附温度降低,吸附量升高,在室温时达最大值125mg/g,故MSU-J的低温吸附性能优异。  相似文献   

4.
以具有两种不同介孔结构的多孔SiO2(BMMs)为载体,采用浸渍法负载磷钨酸(HPW)得到负载型磷钨酸催化剂(HPW/BMMs),通过XRD、FTIR、N2吸附-脱附,TG和SEM等表征手段,重点考察了水、乙醇以及丙酮和乙腈等溶剂对HPW/BMMs催化剂结构和性能的影响。结果表明:在不同溶剂中所制备的负载型HPW/BMMs催化剂样品均保持了BMMs介孔结构,但随着HPW负载量的增大,样品的介孔有序度逐渐降低,比表面积和孔体积逐渐减小;低负载量时,样品表面出现新的HPW物种,通过提高HPW的负载量,可抑制该物种的产生。水溶剂对HPW的Keggin结构影响较大,但HPW的晶型保持完好,分散性能较好,负载量为40%的样品(40HPW/BMMs-WA)总酸密度最高,达到1.381μmol/m2;乙腈溶剂虽更有利于保持HPW的Keggin结构,但晶型破坏较严重,且分散性较差;相比较而言,乙醇和丙酮溶剂的影响则不明显。此外,初步考察了HPW/BMMs样品对废油脂与甲醇催化酯化的降酸效果。  相似文献   

5.
赵红建  马富 《材料导报》2012,26(14):111-114
以正硅酸乙酯为硅源,非离子表面活性剂P123为模板剂,异丙醇铝为铝源,在磷酸介质中合成出了Al-SBA-15介孔分子筛。采用XRD、TEM、SEM、N2-BET、TG-DTA等表征手段,考察了所得材料的物化性能。分析了初始溶液中硅铝比对介观结构的影响。所得材料在XRD谱图中(100)、(110)和(200)处出现较强衍射峰,氮气吸-脱附曲线为典型的Ⅳ型且有H1滞后环,结合TEM分析表明产物具有二维六方排列的介孔结构(空间群为p6mm),SEM结果表明相对纯硅SBA-15,Al-SBA-15介孔分子筛长程有序性没有受到限制。  相似文献   

6.
采用浸渍法制备了具有高比表面积的氧化铝负载的Pd-ZrO2复合物催化剂(Pd-ZrO2/Al2O3),利用BET、XRD、TEM等手段研究了该复合物催化剂的物理特性,并重点研究了该复合物催化剂对以C3H6为还原剂选择性催化还原(SCR)NO的催化反应活性,分别讨论了反应温度、组分、焙烧温度、原料气组分、空速等因素对该催化反应的影响.结果发现,少量的Pd纳米粒子均匀分散于载体氧化铝上,添加适量ZrO2后,所制备的低负载量的Pd(1wt%)-ZrO2(2wt%)/Al2O3复合物催化剂具有较高的NO选择性催化还原反应活性,在240~250℃可使NO的转化率达到50%~70%.其活性提高的机制在于适量ZrO2的添加增强了反应物中NO和C3H6在催化剂表面的吸附,同时与Pd催化剂形成一种协同催化作用.  相似文献   

7.
为了改善活性炭(AC)负载的CeO_2基催化剂的脱硝性能,采用空气热氧化或硝酸对活性炭进行预处理,考察了预处理方式对其负载的CeO_2基催化剂氨选择性催化还原(NH_3-SCR)NO_x反应性能的影响。对预处理后的活性炭及其负载的CeO_2基催化剂进行了红外光谱(FTIR)、NH_3程序升温脱附(NH_3-TPD)、N_2吸附-脱附、X射线衍射(XRD)及H_2-TPR等表征。结果表明:硝酸预处理显著增加了活性炭表面含氧官能团、增强了表面酸性,提高了其负载的CeO_2基催化剂的氧化还原性能,促进了催化剂表面NH_3的吸附和活化,使催化剂表现催化优异的NH_3-SCR脱硝性能。该催化剂对NO_x的起燃温度和完全转化温度分别为75℃和190℃,显著优于空气热氧化处理的活性炭制备的催化剂,但H_2O易导致催化剂活性下降。  相似文献   

8.
本工作以2-戊基蒽醌生产过氧化氢的反应过程为研究背景,使用平均孔径为12 nm的介孔球形氧化硅载体,利用强静电吸附(SEA)法制备了Pd/SiO2催化剂,并使用四乙氧基硅烷包覆催化剂所负载的Pd颗粒,制备出用于蒽醌加氢的Pd@SiO2/SiO2球形颗粒催化剂。相较于未经包覆修饰的Pd/SiO2球形催化剂,Pd@SiO2/SiO2催化剂表现出较高的100%选择性,以及高加氢活性,时空产率高出16.4%;同时,利用物理吸附(BET)、粉末X射线衍射(XRD)、透射电镜(TEM)、H2-TPR、XPS等手段对所制备的Pd@SiO2/SiO2及Pd/SiO2催化剂进行表征,可观察到经包覆后,Pd颗粒表面有0.1 nm左右的SiO2膜,催化剂的比表面积和孔容相较于载体有所增加,而孔径则减小;H2-TPR及XPS表征结果则显示,在Pd@S...  相似文献   

9.
以TiO2为载体,采用挤压成型法制备了钒系蜂窝整体式SCR脱硝催化剂,通过N2吸附-脱附(BET)、X射线衍射(XRD)、扫描电镜(SEM)、FT-Ra-man光谱等表征手段和催化活性测试对混合练泥工序中助催化剂WO3不同引入方式制备的催化剂进行了对比研究。实验结果表明,由钛钨粉制备的催化剂具有较大的比表面积及孔容积;而由偏钨酸铵制备的催化剂具有较均匀的微观结构形貌,活性物种分散性好,拥有更多的VO6八面体结构,且出现了WOx四面体结构,表现出良好的NH3-SCR活性和较宽的活性温度窗口,在空速为10000h-1,氨氮比为1.0时,活性温度范围内NO脱除率达到了93%。  相似文献   

10.
以硝酸盐为原料,氨水为沉淀剂,十六烷基溴化铵(CTAB)为模板,采用化学沉淀法合成介孔Ce1-xAlxO复合物,再用浸渍法制备CuO/Ce1-xAlxO2催化剂.利用X射线衍射和N2吸脱附表征催化剂的结构,结果显示催化剂为介孔立方萤石结构.采用H2-TPR评价其氧活性,O2-TPD和CO-TPD评价其吸附性能,以探索不同物质的量配比铈铝复合物对催化剂性能的影响.  相似文献   

11.
分别以聚乙二醇(PEG6000)及正硅酸乙酯(TEOS)为模板剂和硅源,采用沉淀法制备了SiO2负载型磷钼酸(HPMo)催化剂PEG-HPMo/SiO2,对催化剂进行了FT-IR、XRD、FE-SEM等表征。采用NLDFT平衡模型对吸附-脱附等温数据进行处理,计算了催化剂的孔径分布及比表面积。研究结果表明:催化剂PEG-HPMo/SiO2含有HPMo的Keggin结构且具有较高的脱硫活性。当催化剂用量0.06g、H2O2用量0.04mL、反应温度70℃、反应时间35min时,10mL模型油中的苯并噻吩(BT)基本被完全脱除;催化剂重复使用6次后,催化剂的催化活性没有明显降低。  相似文献   

12.
张利波  王璐  曲雯雯  徐盛明  张家麟 《材料导报》2018,32(5):772-779, 795
综述了以三氧化二铝(Al_2O_3)为载体,负载Mo、Ni单一组元和Mo-Ni-W等复合组元,用于炼制石油加氢脱硫的催化剂的国内外研究现状与进展。全面总结了传统的浸渍法、混捏法、共沉淀法、离子交换法以及新型的微波-超声波法等催化剂合成方法,对Al_2O_3基催化剂的加氢脱硫性能进行了讨论,着重对催化剂合成过程中载体、活性组分、助剂(P、F、B等)和pH值对催化剂性能的影响进行了概述,在此基础上总结了Al_2O_3基加氢脱硫催化剂的不足之处,并展望了此类催化剂的发展方向与研究前景。  相似文献   

13.
Cu-Mn based mixed oxide type low-cost catalysts have been prepared in supported form using mesoporous Al(2)O(3), TiO(2) and ZrO(2) supports. These supports have been prepared by templating method using a natural biopolymer, chitosan. The synthesized catalysts have been characterized by XRD, BET-SA, SEM, O(2)-TPD and TG investigations. The catalytic activity for CO as well as PM oxidation was studied, in a view of their possible applications in the control of emissions from solid fuel combustion of rural cook-stoves. The trend observed for the catalytic activity of the synthesized catalysts for CO oxidation was ZrO(2)>TiO(2)>Al(2)O(3) while for PM oxidation it was observed to be TiO(2)>ZrO(2)>Al(2)O(3). The effect of CO(2), SO(2) and H(2)O on CO oxidation activity was also investigated, and despite partial deactivation, the catalysts show good CO oxidation activity. An effective regeneration treatment was attempted by heating the partially deactivated catalysts in presence of oxygen. Redox properties of TiO(2) and ZrO(2) and their structure appeared to be responsible for their promotional activity for CO and PM oxidation reactions. These unordered mesoporous materials could be useful for such reactions where mass transfer is more important than shape and size selectivity.  相似文献   

14.
以羟基锡酸盐CoSn(OH)6和ZnSn(OH)6纳米空心立方体为前体,采用抗坏血酸作为弱还原剂,经过超声过程分别合成了羟基锡酸钴载Pt/CoSn(OH)6和羟基锡酸锌载Pt/ZnSn(OH)6复合催化剂,并在甲醇氧化反应(MOR)中表现出良好的性能。Pt/CoSn(OH)6和Pt/ZnSn(OH)6催化剂的单位质量活性分别为1 095.6 mA/mg和699.5 mA/mg,高于C载Pt(Pt/C)的594.6 mA/mg。利用XRD、SEM、TEM、XPS和电化学测试对催化剂晶体结构和性能间的关系进行了探索。CO溶出实验结果表明,羟基锡酸盐载体有利于Pt表面CO的去除,载体与Pt间的强相互作用和载体表面的大量羟基基团增强了催化剂的催化活性和CO抗毒性。此外,Pt/(Co,Zn)Sn(OH)6催化剂中单质Pt高的相对含量也有利于提高MOR活性。通过研究载铂羟基锡酸盐电催化氧化甲醇性能,能够揭示载体结构对催化性能的影响,有助于羟基锡酸盐载铂复合催化剂在直接甲醇燃料电池(DMFCs)领域的应用。  相似文献   

15.
为满足大气污染治理的严格要求,改进商用V_2O_5-WO_3/TiO_2脱硝催化剂有毒的弊端,提高催化剂的脱硝效率,本文采用挤出成型法制备蜂窝状Nb-Re-W/Ti(Re=Pr,Nd)无毒催化剂,在模拟烟气脱硝试验装置上进行脱硝活性测试,利用XPS和H2-TPR等表征手段对催化剂进行分析,就Nb和稀土元素的负载量对催化剂脱硝性能的影响进行探讨.研究结果表明:Nb-W/Ti催化剂中Nb最佳负载量为2.8%,最佳反应温度为350℃,NOx转化率最高可以达到95%;当Nb负载量为1.1%时,分别加入1.5%Pr和2.0%Nd后,催化剂的脱硝效率均能达到98%以上.  相似文献   

16.
邬红龙  郭军  张旺  陈卓 《材料导报》2016,30(2):66-70
采用溶胶凝胶法制备一系列R_xCe_(0.8-x)Zr_(0.2)O_2(R=Mg,Ca,Sr和Ba,x=0,0.1,0.2和0.3)催化剂,并用X射线衍射(XRD)、比表面积(BET)、扫描电镜(SEM)、氢气程序升温还原(H_2-TPR)和程序升温氧化(TPO)等技术对催化剂进行表征,同时考察该系列催化剂催化碳烟燃烧活性。研究结果表明,Zr~(4+)均能进入CeO2晶格中形成具有立方萤石结构的固溶体。在不同的接触条件下,样品Ba_(0.1)Ce_(0.7)Zr_(0.2)O_2催化碳烟燃烧活性均最高。在一系列样品Ba_(0.1)Ce_(0.7)Zr_(0.2)O_2中,催化剂与碳烟紧密接触条件下其催化碳烟燃烧时更能够反映出催化剂内在活性的大小,而松散接触时则更易受到接触条件的影响。  相似文献   

17.
以具有优异磁学特性的锶铁氧体(SrFe12O19)粒子为磁性基体, 负载固体酸制备锶磁性固体酸催化剂S2O82-/ZrO2-SrFe12O19。利用XRD、 比表面积测试(BET)、 振动样品磁强计(VSM)、 IR等表征手段, 研究了磁性催化剂的表面性质和催化性能。结果表明: SrFe12O19的掺入提高了介稳的四方晶型t-ZrO2的热稳定性; 固体酸的磁性能较好, 饱和磁化强度(Ms)在30.0 emu·g-1左右, 矫顽力(Hc)大于3900 G, 有利于磁分离和重复使用; BET表面积为16.0 m2·g-1, 平均孔径为8.16 nm, 属于介孔磁性材料; 以乌桕油与甲醇的酯交换为探针反应的研究表明, 该固体酸能在较短时间内有效发挥催化作用。  相似文献   

18.
采用原位一步合成法,在含有模板剂、AlCl3和H2O的弱酸性反应体系中,引入Si源和Fe源,通过原位共沉积的方式,成功制备出Fe修饰的介孔SiO2(Fe-SiO2)复合材料。采用XRD、N2吸附、FTIR、UV-vis、SEM和EDS等手段表征了介孔Fe-SiO2复合材料样品的结构、形貌和化学组成;将所获得的介孔Fe-SiO2复合材料用于吸附和协同催化去除水体中有机污染物亚甲基蓝(MB);考察了Fe源添加量对介孔Fe-SiO2复合材料结构和性能的影响。研究结果表明:合成体系中rFe:Si ≤ 0.05(摩尔比)时,所得Fe-SiO2介孔材料保留了介孔孔道的高度有序性和大比表面积(860~889 m2·g-1),Fe在介孔Fe-SiO2复合材料中主要以四配位骨架掺杂的形式存在;当rFe:Si=0.1时,其比表面积下降为526 m2·g-1,Fe以骨架内和骨架外氧化物的形式共存于介孔Fe-SiO2复合材料中。所有介孔Fe-SiO2复合材料在去除MB的实验中均表现出很大的吸附容量和优良的多相类芬顿催化能力。其中,rFe:Si=0.05时所获得的介孔Fe-SiO2复合材料样品性能最佳,对高浓度MB(250 mg·L-1)的吸附和催化总量达到213 mgg-1。   相似文献   

19.
采用低毒的单体N, N-二甲基丙烯酰胺(DMAA)制备了氧化锆增韧氧化铝(ZrO2/Al2O3)坯体。讨论了分散剂的用量、 ZrO2/Al2O3浆料的pH值、 粉体中ZrO2含量、 粉体所占浆料的固相体积分数、 球磨时间、 预混液中DMAA的浓度(质量分数)对ZrO2/Al2O3浆料黏度的影响。并研究了注凝成型ZrO2/Al2O3坯体的性能和显微结构。结果表明, 当浆料pH值为9, 分散剂的添加量为ZrO2/Al2O3粉体质量的0.6%, 球磨时间为6 h, ZrO2/Al2O3浆料具有最小的黏度。固相体积分数的提高和DMAA加入量的增大都会提高ZrO2/Al2O3浆料的黏度, ZrO2的加入会降低浆料的黏度。用DMAA制备得到的ZrO2/Al2O3坯体结构均匀, 抗弯强度达到25 MPa。   相似文献   

20.
以介孔结构的复合ZrO2-TiO2为载体负载活性组分, 制备了具有高CO催化氧化活性的Pd/ZrO2-TiO2与PdCu/ZrO2-TiO2负载型催化剂。XRD、TEM研究结果表明: 活性组分Pd、Cu物种可均匀分散于介孔载体中。系统考察了不同的催化剂载体、制备方法和助催化剂等对该介孔复合材料CO催化氧化性能的影响, 结果表明: 以ZrO2-TiO2为载体的催化剂其CO催化氧化活性明显优于以介孔Al2O3或介孔SBA-15为载体的催化剂; 一步法制备的介孔Pd/ZrO2-TiO2催化剂其CO催化氧化的低温活性较浸渍法制备的Pd/ZrO2-TiO2有很大提高; 并且Pd和Cu物种共负载的介孔ZrO2-TiO2复合催化剂具有最优的CO催化氧化活性, 其CO的完全催化氧化温度可降至170℃, O2-TPD分析说明Pd和Cu之间的相互作用使得PdCu/ZT催化剂在更低温度具有氧化还原活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号