首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 225 毫秒
1.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

2.
采用Hummers法,以石墨为原料制备氧化石墨烯(GO)。再以辣根过氧化物酶(HRP)和过氧化氢(H_2O_2)的酶催化反应,诱导制备了多孔石墨烯(PGR)。采用傅里叶红外光谱、扫描电子显微镜和电化学分析法对其结构、形貌和性能表征。结果表明:10mg/mL GO溶液加入80μL 5mg/mL HRP后,再每日加入20μL(1×10~(-3))mol/L H_2O_2反应10d可以获得最佳的多孔结构。基于此构置的生物催化诱导型葡萄糖传感器,反应25min时,可在电位为0.98V处呈现Au氧化峰,使其可用于葡萄糖的高灵敏检测。  相似文献   

3.
为改善氧化铜(CuO)传感器的灵敏度,以氮苯基甘氨酸(NAN)、氧化石墨烯(GO)为原材料,在磷酸缓冲液支持的电解质溶液中,通过电化学聚合法在玻碳电极上制备出碳基复合材料(rGO/NPAN),并以其为支撑材料,采用循环伏安法将氧化铜与之复合最终形成氧化铜/石墨烯/N取代羧基聚苯胺(CuO/rGO/NPAN)电化学传感器。N取代羧基聚苯胺的强吸附性、及石墨烯的大比表面积、高导电性有利于氧化铜的均匀分布。利用扫描电镜(SEM)对CuO/rGO/NPAN传感器的形貌进行表征,讨论了pH值、扫描速率等因素对电化学活性和电催化活性的影响,采用循环伏安发、计时电位法、交流阻抗法对该传感器的电化学性能进行研究,并对其电化学机理进行探讨。结果表明,该修饰电极具有低的检测电位、高的电化学响应及良好的稳定性,检测亚硝酸根的浓度范围为(0.5×10-6)~(7.4×10-3)mol/L与(7.4×10-3)~(22.9×10-3)mol/L。灵敏度为32.317μA/(mmol·L),检测下限低至0.15μmol/L(S/N=3)。将此传感器用于实际应用,回收率在99.9%~112%之间。  相似文献   

4.
采用一步水热法制备尖晶石型钴酸锌(ZnCo_2O_4)及钴酸锌/石墨烯(ZnCo_2O_4/rGO)复合材料,通过XRD,SEM和RST5000电化学工作站对材料的组分、表面形貌及电化学性能进行表征。通过改变水热温度,制备出具有辐射状花簇团结构、褶皱片层结构和表面光滑的球体结构的ZnCo_2O_4电极材料。结果表明:加入石墨烯后,ZnCo_2O_4呈规则的多边形结构,附着在石墨烯片上,两者的协同作用可有效改善电极材料的电化学性能;钴酸锌与氧化石墨烯的质量比为6∶1时得到的ZnCo_2O_4/rGO复合材料的比电容为205F/g,比纯ZnCo_2O_4的比电容提升了约114%。  相似文献   

5.
本文采用电化学法还原石墨烯,成功构建了安培型电化学传感器用于包装纸中五氯苯酚的快速检测。首先由改进的Hummers方法合成了氧化石墨烯,修饰于丝网印刷碳电极(SPCE)表面,然后通过一步电化学还原法制得还原石墨烯(rGO)修饰的SPCE(rGO/SPCE)。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)以及拉曼光谱仪等对合成的材料进行表征。得益于rGO对电极电子传递效率的改善,构建的传感器rGO/SPCE表现出对五氯苯酚(PCP)快速、高选择性的电化学响应,其线性范围为0.6~9.6mg L_(-1) (R2=0.994),灵敏度为0.9336μA·L·mg_(-1),检出限为0.032 mg L_(-1) (S/N=3),平均回收率为83.73%~94.3%。此外,传感器表现出较好的稳定性和重复性,有望为包装纸的绿色安全印刷提供技术支撑  相似文献   

6.
以葡萄糖为还原剂,采用化学镀原位合成纳米银-石墨烯复合材料(Ag/GR),通过X射线衍射(XRD)、X射线能量色散谱(EDS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和傅里叶红外光谱(FTIR)等方法对材料的结构形态进行表征分析.结果表明,石墨烯表面银的负载形态为预期的单质状态,AgNPs平均粒径约为21 nm.同时,利用循环伏安法(CV)、交流阻抗谱(EIS)、线性伏安扫描法(LSV)和差分脉冲伏安法(DPV)对抗坏血酸(AA)在Ag/GR/GCE电化学传感器上的电化学响应进行研究.电化学测试结果表明,Ag/GR复合材料具有最高的响应电化学信号212.9μA和最低的电荷转移电阻90.5Ω,峰值电流约为石墨烯电极(110μA)的2倍和玻碳电极(42.5μA)的5倍,AgNPs与石墨烯具有良好的协同作用,对AA具有明显的电催化活性.AA的阳极峰电流在5~120μmol/L浓度范围内线性增加.然而,AA的阳极峰电流与浓度范围为50~120μmol/L的自然对数高度相关,检测限为0.06μmol/L.  相似文献   

7.
通过化学气相沉积法制备出孔洞为300~500μm骨架完好的三维石墨烯,并采用晶种诱导法在三维石墨烯表面原位生长直径为100nm左右、长度达2.80μm的ZnO纳米棒,从而制备出高度结晶的三维石墨烯/氧化锌纳米结构的复合材料。复合材料用XRD、SEM进行表征,并通过循环伏安曲线(CV曲线)及时间电流曲线(I-t曲线)电化学测试方法,测试三维石墨烯/氧化锌纳米结构复合材料对双氧水的检测情况。结果显示,采用新方法制备的三维石墨烯/氧化锌纳米结构复合材料作为电极对双氧水表现出优异的检测性能,检测限为1μmol/L,且线性检测范围为10~120μmol/L。  相似文献   

8.
采用原位聚合法制备石墨烯/聚苯胺复合材料,利用透射电子显微镜(TEM)和X射线衍射(XRD)对其进行了表征;并将制得的石墨烯/聚苯胺复合材料作为化学修饰剂制成石墨烯/聚苯胺复合材料修饰碳糊电极,利用三电极体系循环伏安法,在NH3-NH4Cl缓冲溶液中测定镉离子(Cd~(2+))的电化学行为。结果表明:石墨烯/聚苯胺(GSs/PANI)复合材料提高了碳糊电极的电化学性能,使其对Cd~(2+)的电化学响应和选择性均得到提高。在石墨烯/聚苯胺复合材料质量分数为0.5%,pH=10.75的NH3-NH4Cl缓冲溶液的最佳检测条件下,Cd~(2+)的响应电流与Cd~(2+)的浓度在1.0×10-8~2.0×10-5 mol·L-1的范围内呈现出良好的线性关系,相关系数为0.9939,检出限为2.246×10-8 mol·L-1。  相似文献   

9.
通过碱液水热法制备TiO_2纳米管(TiO_2-NTs)前驱体,并将其与氧化石墨烯复合得到二氧化钛纳米管/还原氧化石墨烯(TiO_2-NTs/rGO)复合材料。利用X射线衍射仪(XRD),透射电子显微镜(TEM),电化学测试等分析技术对复合物进行表征。结果表明:复合物中TiO_2-NTs晶相为B型(TiO_2(B)),其管径约为25~30nm;与单纯TiO_2-NTs相比,石墨烯负载的TiO_2-NTs的倍率性能和循环性能都得到显著改善,在放电倍率为1C(335mA/g)时,TiO_2-NTs/rGO和TiO_2-NTs首次放电容量分别为258.5mAh/g和214.9mAh/g;电化学阻抗谱测试显示,复合材料的电荷转移电阻明显小于纯相TiO_2-NTs。  相似文献   

10.
利用制备的氨基-β-环糊精-石墨烯-二茂铁(β-CD-NH2/GNs/Fc)复合膜修饰电极,研究了多巴胺(DA)的电化学行为。结果表明,该复合膜修饰电极在pH值=7.00的磷酸盐缓冲溶液(PBS)中对DA有良好的电催化性能,DA的氧化峰电流在0.1~100μmol/L浓度范围内呈良好的线性关系,检出限为8.5×10-8mol/L。结果表明该修饰电极具有较高的检测灵敏度,可用于实际样品的检测。  相似文献   

11.
双酚A(BPA)被广泛应用于食品包装材料中,它会引起人体内分泌失调,并导致免疫和生殖系统异常,因此对生活用水中BPA的检测十分重要。本文采用一步水热法合成纳米Fe2O3-还原氧化石墨烯(Fe2O3-rGO)复合材料并进行表征,基于Fe2O3-rGO复合材料构建电化学传感器Fe2O3-rGO/玻碳电极,用于检测水样中的BPA。通过FTIR、XRD和SEM分析,表明纳米Fe2O3粒子成功附着到rGO上;采用微分脉冲伏安法(DPV)进行BPA的电化学检测,结果显示BPA在0.1~100 μmol/L范围内呈现良好的线性关系,检出限为0.033 μmol/L(信噪比为3)。同时,Fe2O3-rGO/玻碳电极电化学传感器对电活性物质和常见金属离子具有良好的抗干扰能力,且实样检测结果理想。   相似文献   

12.
A bio-mediated route for the synthesis of silver nanoparticles (AgNPs) is an area of interest in research of many scientists, and this work aims to study the electrocatalytic activity of these particles during electrochemical sensing of H\(_{2}\)O\(_{2 }\) in a phosphate buffer media. The composite electrodes were fabricated using nearly spherical AgNPs and reduced graphene oxide (rGO) with the graphite (99.999% purity) support made of graphite paste. Graphene oxide (GO) was first synthesized using the modified Hummers method followed by rGO synthesis by chemical reduction of GO. rGO is consisting of about nine layers of rGO sheets of a wrinkled surface morphology with an intensity ratio of D to G band (\(I_{D}/I_{G})\) of 1.17 and an interplanar d-spacing of 0.36 nm as evidenced by HRTEM micrograph. There was about 10 times increase in the cell current with the AgNPs-impregnated composite–electrode compared to without AgNPs impregnation, and an overpotential of \(\hbox {H}_{2}\hbox {O}_{2}\) reduction was found to be \(-\)1.373 V with a detection limit of 19.04 \(\upmu \)M and 95.3% electrode stability with the graphite–rGO–AgNPs composite electrode. A nafion membrane cast on the rGO–AgNPs prevented the leakage of this composite from the electrode surface. The interference of various electroactive compounds on the amperometric response of the graphite–rGO–AgNPs electrode was also investigated.  相似文献   

13.
Nano-Micro Letters - In this study, glassy carbon electrode modified by silver nanoparticles/carbon nanotube/reduced graphene oxide (AgNPs/CNT/rGO) composite has been utilized as a platform to...  相似文献   

14.
Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li,which results in a high capacity level,which substantially exceeds that of graphite anodes.However,this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides.To address these challenges,in this study,we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO),based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment.Because of its high conductivity,large accessible area,and inherent flexibility,the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g-1 over 600 cycles at 10 C),significantly outperforming previously reported Bi-based materials.This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.  相似文献   

15.
以TiO2(P25)、 Fe(NO3)3·9H2O、 Zn(NO3)2·6H2O和氧化石墨烯(GO)为原料,通过一步溶剂热法合成可磁分离的ZnFe2O4-TiO2/还原氧化石墨烯(rGO)复合材料。采用UV-Vis、 Raman、 XRD、 SEM和EDS对ZnFe2O4-TiO2/rGO复合材料进行表征,并研究不同rGO比例的ZnFe2O4-TiO2/rGO对模拟染料废水亚甲基蓝(MB)的光催化降解性能。GO在溶剂热反应过程中,被还原成rGO。由于ZnFe2O4和rGO的加入,不仅使ZnFe2O4-TiO2/rGO实现对可见光的吸收,而且使其具有磁性,便于分离和回收利用。当GO质量分数为5wt%时, ZnFe2O4-TiO2/rGO显现出对MB最佳的光催化活性, 60 min光照后的降解率达到99.1%。通过光催化活性物种捕获实验得出ZnFe2O4-TiO2/rGO复合材料降解MB的过程中,活性物种主要为·OH和·O2-, TiO2导带(CB)中的光生电子(e+)转移到ZnFe2O4的价带(VB),遵循Z型转移机制。光催化剂稳定性实验表明, ZnFe2O4-TiO2/rGO复合材料具有优越的稳定性,可作为太阳光照射下降解有机染料的光催化剂。  相似文献   

16.
通过电化学还原法制备纳米Fe3O4-还原氧化石墨烯复合修饰玻碳(Fe3O4-rGO/GCE)电极,用于多巴胺(DA)的检测。采用SEM、TEM和循环伏安对纳米Fe3O4-rGO复合材料进行表征。在pH为7.0的磷酸盐缓冲液(PBS)中,采用循环伏安法研究了DA在纳米Fe3O4-rGO/GC上的电化学行为。实验结果表明,较裸GC电极和rGO修饰(rGO/GC)电极,由于纳米Fe3O4与rGO的协同作用,纳米Fe3O4-rGO/GC显著增大了Fe3O4-rGO/GC复合材料电极电化学活性面积和氧化峰电流强度ipa。DA的浓度在6.0×10-8~2.0×10-6 mol/L和2.0×10-6~8.0×10-5 mol/L范围内,与氧化峰电流强度ipa呈良好的线性关系,检出限达4.0×10-9 mol/L(信噪比S/N=3)。抗坏血酸和尿酸共存物几乎不干扰DA的测定,选择性高。Fe3O4-rGO/GC修饰电极用于盐酸DA注射液中的DA含量测定,获得结果较好,回收率为97.1%~103.9%。  相似文献   

17.
石墨烯-银纳米粒子复合材料的制备及表征   总被引:3,自引:0,他引:3  
以无毒、绿色的葡萄糖为还原剂, 在没有稳定剂、温和的液相反应条件下, 同时还原氧化石墨和银氨溶液中的银氨离子, 原位制备石墨烯-银纳米粒子复合材料. 采用X射线衍射、红外吸收光谱、拉曼光谱、扫描电镜和透射电子显微镜对所制备的石墨烯-银纳米粒子复合材料进行了表征. 结果表明: 氧化石墨和银离子在反应过程中同时被葡萄糖还原, 银纳米粒子均匀分布于石墨烯片层之间, 生成的银纳米粒子中大多数存在着孪晶界, 银纳米粒子的大小和分布受硝酸银用量的影响, 在合适的银离子浓度下, 负载在石墨烯片层上的银纳米粒子的粒径分布集中在25 nm左右; 复合材料中石墨烯的拉曼信号由于银粒子的存在增强了7倍.  相似文献   

18.
We report a double-sacrificial-template method for the fabrication of a Cu2O and a reduced graphene oxide (rGO) porous nanocomposite (Cu2O/rGO), which has great potential in non-enzymatic glucose detection. Firstly, an aqueous graphene oxide (GO) solution was dispersed in a polystyrene (PS)/cyclohexane (CH) solution to prepare a water-in-oil emulsion at 50 °C. Then, the emulsion was cast onto a glass substrate to evaporate solvents and cooled down to room temperature. During that time, the self-assembly of the GO sheets and the PS chains takes place at the interface. The cooling of the emulsion below the θ temperature of the system PS/CH (34.5 °C) facilitates the precipitation of the PS chains at the interface to form microcapsules. A sponge-like PS/GO composite film was thus obtained after complete evaporation of solvents, where the water droplets in the emulsion served as the first sacrificial template. The PS/GO composite was loaded with copper compounds and was then carbonized to remove the second template of the polymer. In this manner, a free-standing porous nanocomposite of Cu2O/rGO was fabricated, and its structure was carefully characterized. The composite was applied as the working electrode in order to take advantages of its porous microstructure, the conductivity of rGO, and the electrochemical performance of crystalline nano-Cu2O. The electrochemical responses of the composite to glucose were evaluated at glucose concentration ranging from 20 to 1000 μM. The results evidence that the porous nanocomposite of Cu2O/rGO exhibits fast and linear amperometric responses to glucose with excellent sensitivities. Moreover, the stability of the Cu2O/rGO composite in the electrolyte solution and its selective response to glucose have been demonstrated to indicate its practical potential.  相似文献   

19.
以天然鳞片石墨为原料,采用改进的Hummers法制备了氧化石墨(GO),以GO和硫氰酸铵为前驱体,采用一步水热法制备了硫氮共掺杂石墨烯(SNG)。X射线衍射、扫描电子显微镜和拉曼光谱分析结果显示,硫和氮成功掺入石墨烯晶格中,SNG表面褶皱明显且形成了三维孔道结构。通过交流阻抗、循环伏安法和差分脉冲伏安法考察了对苯二酚(HQ)、邻苯二酚(CC)和间苯二酚(RC)在修饰玻碳电极(SNG-180/GCE)上的电化学行为。结果表明:硫氮共掺杂能有效改善石墨烯的电化学性能,修饰电极实现了对HQ、CC和RC的同时检测,线性范围在5.5~43.06μmol/L和90.91~245.28μmol/L之间,检出限为1.83μmol/L(信噪比为3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号