首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this study we have analyzed the hydrochemical effect of drought conditions during 311 hydrological episodes in nine headwater streams in central Ontario over the past 20 years. Acid Neutralization Capacity (ANC) was logarithmically correlated (p<0.05) to antecedent discharge in eight of the nine streams, with the largest decline in ANC occurring after low antecedent flow. In eight of the nine streams SO4(2-) was the most important driving mechanism of ANC decline, but dilution as well as organic acidity was important in several streams. No decrease in the SO4(2-) driven ANC decline was observed over the 20 year study period despite a approximately 40% reduction in SO4(2-) deposition. The strong correlation between ANC decline and low antecedent discharge demonstrates that episodic acidification during rain events is strongly associated with preceding drought conditions, especially in wetland-dominated catchments. The results have important implications for recoveryfrom acidification, especially in northern ecosystems where climate scenarios forecast that warmer and drier conditions will be more common.  相似文献   

2.
The last several decades have seen decreases in SO(4)(2-) deposition across the northeastern United States. As a result, SO(4)(2-) concentrations in lakes and streams have also decreased and many surface water bodies have become less acidic. During the same time period, there has been a concurrent increase in dissolved organic carbon (DOC) concentrations in many lakes and streams. We used fluorescence spectroscopy to characterize the dissolved organic matter (DOM) quality of archived samples from nine acid-sensitive lakes in Maine collected between 1993 and 2009, and determined that increased DOM contributions to lakes were primarily derived from litter and soil. All five lakes with increasing DOC trends demonstrated significant decreasing (i.e., more terrestrial) trends in fluorescence index (FI) and significant positive correlations between SO(4)(2-) and FI. This study used the chemical signature of terrestrial DOM to support the hypothesis that increased DOC concentrations in lakes and streams are driven by declining acid deposition and increased solubility of soil organic matter across a large area of the landscape.  相似文献   

3.
Streamwater composition data obtained through periodic sampling of streams that support brook trout (Salvelinus fontinalis) in the mountains of western Virginia were examined for evidence of recovery from acidification during the 1988-2001 period. Measurements of sulfate deposition in precipitation indicate that sulfate deposition in the region declined approximately 40% between 1985 and 2000. While no significant regional trends in acid-base constituents were observed for the set (n = 65) of western Virginia study streams, significant regional trends were observed for a subset (n = 14) of streams in Shenandoah National Park (SNP). For the subset of SNP streams, the median increase in acid-neutralizing capacity (ANC) was 0.168 microequiv L(-1) year(-1) and the median decrease in sulfate concentration was -0.229 microequiv L(-1) year(-1). Although these trends are consistent with recovery from acidification, the degree of apparent recovery is small compared to estimates of historic acidification in SNP streams and much less than observed in other, more northern regions in the United States. Correlation between sulfate concentration trends and current sulfate concentrations in streamwater suggests that recovery from stream acidification in the western Virginia region is determined by sulfur retention processes in watershed soils. A transient increase in nitrate concentrations that occurred among some western Virginia streams following forest defoliation by the gypsy moth (Lymantria dispar) complicates interpretation of the observed patterns of change in acid-base status.  相似文献   

4.
In this study we report on changes in the magnitude and mechanisms of episodic acidification of a small acid-sensitive stream in western Maryland (U.S.) during the 1990s, a period in which wet sulfate deposition declined by 10-25% due to implementation of the Clean Air Act Amendments (CAAA) of 1990. We observed a relatively minor trend in the magnitude of episodic acidification over this period, as measured bytransient changes in acid neutralizing capacity (deltaANC) and minimum values of ANC (ANC(min)) during 22 events sampled prior to and following CAAA implementation. Any relationship to changes in atmospheric deposition appears to be confounded by large hydroclimatological variability between the two sampling periods. Nonetheless, results obtained prior to implementation of the CAAA indicated that the mechanism of episodic acidification was mostly attributable to flushing of accumulated sulfate from the watershed, whereas results obtained post-CAAA indicated domination by base cation dilution. This shift in the mechanism of episodic acidification is qualitatively consistent with hydrochemical theory, as well as with empirical results from surface waters in other regions where dramatic declines in sulfate deposition have taken place.  相似文献   

5.
During the past 20 years, acid deposition in Europe has decreased by more than 60%, yet still a large number of lakes and streams in southern Norway have not recovered to a water quality sufficient to support sustainable populations of trout or salmon. Long-term (30 years) monitoring data were used hereto constrain the calibration of the acidification model MAGIC to three Norwegian calibrated catchments. The model accounted for 60-80% of the variance in the year-to-year variations in concentrations of most of the major ions in streamwater. The results support the use of the lumped parameter acid neutralizing capacity (ANC) to link chemical parameters to biological response, as the calibration efficiency for ANC is considerably higher than for other biologically important parameters such as inorganic aluminum (Al(n+)) and pH. Three different scenarios for future deposition of sulfur were run: current legislation, maximum feasible reductions, and an illustrative scenario removing all anthropogenic deposition. These analyses show that much of the potential improvement in water quality has already occurred and that only limited further improvement can be expected from the current legislation. The current legislation is unlikely to produce ANC values sufficiently high to allow self-reproducing populations of trout at two of the three sites. Most of the response in water chemistry to reduced acid deposition has been rapid; the water chemical responses largely occur the same year or a few years after reduction in the input. The soil pool of exchangeable base cations depleted during 150 years of acid deposition, however, requires several centuries for replenishment. The uncertainties in future predictions come from several factors, such as future nitrogen dynamics and impacts from changes in seasalt and precipitation events. The differences in future water chemistry predicted from changed seasalt deposition or nitrogen dynamics are larger that the differences between different deposition scenarios. Hence, these factors must be included in future assessments of recovery from acidification.  相似文献   

6.
While SO4(2-) concentrations in runoff are decreasing in many catchments in Europe, present day S output still exceeds the S input for most forested catchments in Europe and North America. Here we report that a large part of the observed SO4(2-) in the runoff at a large-scale catchment study site (the G?rdsj?n roof experiment in southwestern Sweden) originates from the organic S pool in the O horizon. Budget estimates comparing soil S pools showed reductions in the S pool of 57 mmol of S m(-2) in the O horizon and 26 mmol of SO4(2-) m(-2) in the mineral Bs horizon after excluding anthropogenic deposition for four years. There was an increase of about 1% per hundred in the delta34S(SO4), value of the mineral soil SO4(2-) between 1990 and 1995 (average and 95% confidence interval of 6.2 +/- 0.6 and 7.7 +/- 0.6% per hundred, respectively), but the delta34S(SO4) values in the E horizon are still much lower than the sprinkler water input of +19.7% per hundred, although the horizon has only a small extractable SO4(2-) pool. After nine years (1991-2000) of artificially supplying S inputs comparable with those amounts supplied by preindustrial rain, the amount of S in runoff still exceeded the input by 30%. This extra 30% corresponds to a loss of 3 mmol of S m(-2) year(-1), compared to the soil S organic O horizon pool of 1098 mmol m(-2) in 1990, suggesting that recovery is delayed for decades, at least.  相似文献   

7.
Steady-state critical load models have been extensively used as the scientific underpinning for air pollution control policies in Europe and are currently being applied to other parts of the world. An important assumption of steady-state models is that critical load estimates do not change through time (or time scale of interest). The most commonly used model for estimating freshwater critical loads is the steady-state water chemistry (SSWC) model. In this study we examined changes in SSWC critical load estimates for 29 lakes in south-central Ontario using data collected 13 years apart (1985-1998), during which time bulk sulfate (SO4(2-)) deposition decreased by 35%. In lakes with the lowest base cation concentrations (<120 microequiv L(-1) Ca2+), the decrease in SO4(2-) concentration was accompanied by an approximately equivalent decrease in base cation concentration, resulting in only a minimal increase in Acid Neutralizing Capacity (ANC) during the 13-year period (median increase 1.6 microequiv L(-1)), and the median critical load for acidity (CL(A)) estimated by the SSWC model decreased by 14.6%. These changes may have been brought about by declining base cation concentrations owing to continued soil acidification in the region. In contrast, in lakes with higher base cation concentrations (>150 microequiv L(-1) Ca2+), the relative decline in base cation concentration was not as great, resulting in a larger increase in ANC (median increase 13.1 microequiv L(-1)) and an increase in the estimated CL(A) (median 5.1%). Lakes with moderate base cation concentrations (120-150 microequiv L(-1) Ca2+) exhibited an intermediate response; the median ANC increased by 8.8 microequiv L(-1) and the estimated CL-(A) decreased by 2.2%. In central Ontario, SSWC critical load estimates based on data taken only 13 years apart change quite dramatically due to changing lake base cation concentrations, and the response appears to depend on the base status of the lakes. The changing values obtained from the SSWC model have important consequences for policy decisions regarding acceptable levels of acid deposition. The application of dynamic models that take into account changes in lake/soil chemistry appears more appropriate for estimating acceptable levels of acid deposition in the region.  相似文献   

8.
The Bohemian Forest was exposed to high levels of sulfur and nitrogen deposition during the last century. The change in acid deposition caused a rapid decline in pH and increase in Al concentrations of soil solutions since the 1950s. A possible negative effect of soil chemistry on growth of Norway spruce tree has been studied using the 13C isotopic signal and chemistry of the tree rings. Tree rings were sectioned by decades, and whole wood was analyzed for isotopic composition (delta 13C) and content of Mg, Ca, and Al. Only those rings that formed after the juvenile effect in early rings were used and trends from the beginning of 20th century were evaluated. The mean delta 13C of the spruce tree rings was 17.6%. The delta 13C did not follow climate changes but had an opposite trend to that of acid depositions and Al concentrations in soil solution, but a similar trend as soil acidification (pH decrease), implying a negative effect of acid deposition and soil acidification on tree physiology. The molar ratio of base cations to Al decreased together with delta 13C.  相似文献   

9.
Long-term changes in the chemistry of wet deposition and lake water were investigated in the Adirondack Region of New York. Marked decreases in concentrations of SO4(2-) and H+ in wet deposition have occurred at two sites since the late 1970s. These decreases are consistent with long-term declines in emissions of sulfur dioxide (SO2) in the eastern United States. Changes in wet NO3- deposition and nitrogen oxides (NOx) emissions have been minor over the same interval. Virtually all Adirondack Lakes have shown marked decreases in concentrations of SO4(2-), which coincide with decreases in atmospheric S deposition. Concentrations of NO3- have also decreased in several Adirondack lakes. As atmospheric N deposition has not changed over this period, the mechanism contributing to this apparent increase in lake/watershed N retention is not evident. Decreases in concentrations of SO4(2-) + NO3- have resulted in increases in acid-neutralizing capacity (ANC) and pH and resulted in a shift in the speciation of monomeric Al from toxic inorganic species toward less toxic organic forms in some lakes. Nevertheless, many lakes continue to exhibit pH values and concentrations of inorganic monomeric Al that are critical to aquatic biota. Extrapolation of rates of ANC increase suggests that the time frame of chemical recovery of Adirondack Lakes will be several decades if current decreases in acidic deposition are maintained.  相似文献   

10.
Acidification of Norwegian surface waters, as indicated by elevated concentrations of sulfate and a corresponding reduction in acid neutralizing capacity and pH, is a result of emission and subsequent deposition of sulfur and nitrogen compounds. Episodic sea-salt deposition during severe weather conditions may increase the effects of acidification by mobilizing more toxic aluminum during such episodes. Changes in climatic conditions may increase the frequency and strength of storms along the coast thus interacting with acidification effects on chemistry and biota. We found that the North Atlantic Oscillation (NAO) is linked to sea-salt deposition and sea-salt induced water chemistry effects in five rivers. Particularly, toxic levels of aluminum in all rivers were significantly correlated with higher NAO index values. Further, temporal trends were studied by comparing tendencies for selected statistical indices (i.e. frequency distributions) with time. The selected indices exhibited strong correlations between the NAO index, sea-salt deposition and river data such as chloride, pH and inorganic monomeric aluminum, pointing at the influence of North Atlantic climate variability on water chemistry and water toxicity. The potentially toxic effects of sea-salt deposition in rivers seem to be reduced as the acidification is reduced. This suggests that sea-salt episodes have to increase in strength in order to give the same potential negative biological effects in the future, if acid deposition is further reduced. More extreme winter precipitation events have been predicted in the northwest of Europe as a result of climate change. If this change will be associated with more severe sea-salt episodes is yet unknown.  相似文献   

11.
Surface waters in Europe and North America are slowly recovering from acidification following major reductions in emissions of sulfur dioxide (SO(2)) since the 1980s. In contrast, regions affected by acid rain have been reported to be growing in China. Here we show that the rapid change in surface water chemistry in the 1990s in large areas in Southwestern China, specifically the tributary rivers of the Upper Yangtze River, caused by increasing SO(2) emissions, has leveled off. During the 1990s the sulfate (SO(4)(2-)) concentrations in river water increased rapidly and, on average, doubled in only eight years. Simultaneously, calcium (Ca(2+)) concentrations increased, while pH values decreased. In the following decade (2000s), SO(2) emissions stabilized, causing a subsequent stop to the increasing SO(4)(2-) concentrations and pH decline in river water. Although a rapid response to future reduction in SO(2) emissions can be expected, a rapid increase of nitrogen (N) emissions could lead to increases in N leaching and delay recovery.  相似文献   

12.
The relationship between dissolved organic carbon (DOC) and the acidification of soils and freshwaters by sulfate (SO4(2-)) has been a topic of great debate over the last few decades. Most interest has focused on long-term acidification. Few have considered the influence of episodic drought-induced acidification in peatlands on DOC mobility, even through the increased acidity and ionic strength associated with the oxidation of reduced sulfur to SO4(2-) are known to reduce DOC solubility. Reduced DOC concentrations during droughts have often been attributed to: (i) reduced hydrological export; (ii) physicochemical changes in the peat structure; or (iii) changes in the biological production and/or consumption of DOC. Our experimental drought simulations on peat cores showed that SO4(2-) induced acidification reduced DOC concentrations during droughts. However, the relationships between SO4(2-)/pH/ ionic strength and DOC were only apparent when the reductions in observed DOC were expressed as a fraction of the estimated DOC concentration in the absence of SO4(2-), which were derived from soil depth, temperature, and watertable data. This analysis showed that a pH fall from 4.3 to 3.5, due to a SO4(2-) rise from < 2.5 to 35 mg L(-1), caused a 60% reduction in DOC concentrations. In contrast, poor correlations were recorded between S042-/pH/ionic strength and the observed DOC data. As DOC both influences acidity and is influenced by acidity, the relative change in DOC needed to be considered to disentangle the effect of inputs of mineral acids into a system naturally dominated by variable concentrations of organic acids.  相似文献   

13.
Periodic acidification of waterways adjacent to coastal acid sulfate soils (CASS) is a significant land and water management issue in the subtropics. In this study, we use 5-months of continuous radon ((222)Rn, a natural groundwater tracer) observations to link estuarine acidification to groundwater discharge in an Australian CASS catchment (Tuckean Swamp). The radon time series began in the dry season, when radon activities were low (2-3 dpm L(-1)), and the pH of surface water was 6.4. We captured a major rain event (213 mm on 2 March 2010) that flooded the catchment. An immediate drop in pH during the flood may be attributed to surface water interactions with soil products. During the post-flood stage, increased radon activities (up to 19.3 dpm L(-1)) and floodplain groundwater discharge rates (up to 2.01 m(3) s(-1), equivalent to 19% of total runoff) coincided with low pH (3.77). Another spike in radon activities (13.2 dpm L(-1)) coincided with the lowest recorded surface water pH (3.62) after 72 mm of rain between 17 and 20 April 2010. About 80% of catchment acid exports occurred when the estuary was dominated by groundwater discharging from highly permeable CASS during the flood recession.  相似文献   

14.
Changes in lake water chemistry between 1984 and 2001 at 130 stratified random sites across the northeastern United States were studied to evaluate the population-level effects of decreases in acidic deposition. Surface-water S04(2-) concentrations decreased across the region at a median rate of -1.53 microequiv L(-1) year(-1). Calcium concentrations also decreased, with a median rate of -1.73 microequiv L(-1) year(-1). This decrease in Ca2+ retarded the recovery of surface water acid neutralizing capacity (Gran ANC), which increased at a median rate of 0.66 microequiv L(-1) year(-1). There were small increases in pH in all subregions except central New England and Maine, where the changes were not statistically significant. Median NO3- trends were not significant except in the Adirondacks, where NO3- concentrations increased at a rate of 0.53 microequiv L(-1) year(-1). A regionwide decrease in the concentration of total Al, especially in ponds with low ANC values (ANC < 25 microequiv L(-1)), was observed in the Adirondack subregion. These changes in Al were consistent with the general pattern of increasing pH and ANC. Despite the general pattern of chemical recovery, many ponds remain chronically acidic or are susceptible to episodic acidification. The continued chemical and biological recovery at sites in the northeastern United States will depend on further controls on S and N emissions.  相似文献   

15.
A huge amount of radioactive 129I has been released into the environment from the nuclear energy industry, atomic weapon tests, and nuclear accidents. In this study, we present weekly and seasonal data on 129I measured in precipitation and runoff of northern Europe during 1998 and 1999. The 129I concentration is at 10(8)-10(9) atoms/L in precipitation and (2-5) x 10(8) atoms/L in runoff water, and it is 3-4 orders of magnitude higher than in the prenuclear era. Snow shows lower 129I concentration than rain, and there is apparently a positive correlation between surface air temperature and 129I. Precipitation chemistry, expressed as the content of Cl, SO4, and NO3 and atmospheric ozone, exhibits weak negative correlation with 129I values. Our 129I data on precipitation suggest significant influence of the northern European atmosphere by the discharges from the nuclear reprocessing facilities at Sellafield and La Hague.  相似文献   

16.
We have combined a long-term hydrochemistry model (MAGIC) with a model that predicts short-term transient changes in hydrochemistry (pBDM) during hydrological events in order to improve the temporal resolution of retrospective analyses and future predictions of streamwater acidification. The model has been applied to a heavily impacted catchment in the Czech Republic. Spring flood acid-neutralizing capacity (ANC), pH, and inorganic monomeric aluminum (Ali(n+)) were simulated for the years of 1860, 1900, 1930, 1950, 1965, and 1985, measured in 1999, and predicted for 2030 using two different emission control scenarios. If the emission reduction according to the current legislation scenario is implemented, the model predicts that the spring flood pH, ANC, and Ali(n+) will recover close to the level of the 1950s by 2030. This will occur despite the annual average chemistry being farfrom having recovered to that level. The results suggest that the recovery of spring flood events is faster then the recovery of annual average chemistry and that much of what is won by further emission reduction will not be fully realized on an annual time scale.  相似文献   

17.
Although most of forested watersheds in temperate and boreal regions are snow-covered for a substantial portion of the year, responses of biogeochemical processes under the snow pack to climatic fluctuations are poorly understood. We investigated responses of dissolved organic carbon (DOC) and surface water chemistry in stream and lake discharge waters draining the Arbutus Lake Watershed in the Adirondacks of New York State to climatic fluctuations during the snow-covered months from December through April. Interannual variability in stream discharge corresponded to changes in air temperature and snow pack depth across the winter months. Concentrations of DOC in stream water draining a subcatchment showed immediate positive responses to rising temperatures and subsequent increases in runoff during most snowmelt events. Increases in DOC concentrations usually coincided with decreases in pH and increases in total aluminum (Al) concentrations, while the correlations between concentrations of DOC and SO4(2-) or base cations were negative. Although changes in air temperature, snow pack depth, and runoff were all significantly correlated with stream water concentrations of major solutes, stepwise linear regression found that runoff was the best predictor of solute concentrations. Results of stepwise linear regression with long-term monthly monitoring data collected at the lake outlet showed weaker but still consistent climatic effects on interannual variations in concentrations of DOC and other solutes. Over the 17 winter periods from December 1983 through April 2000, changes in seasonal average concentrations of DOC, H+, and Al in lake discharge generally corresponded to interannual variations in temperature, precipitation, and runoff, while SO4(2-) and base cations displayed an opposite trend. The results suggest that snowmelt-mediated DOC responses to temperature fluctuations during the winter months might offset increases in the surface water pH caused by decreasing acidic deposition and pose a potential hazard of Al toxicity in surface waters.  相似文献   

18.
Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.  相似文献   

19.
Application of a LRT model to acid rain control in China   总被引:2,自引:0,他引:2  
For further control of acid rain and SO2 pollution in China, acid rain control zones and sulfur dioxide pollution control zones were designated where acid rain or serious SO2 pollution occurs or may occur. In this study, sulfur deposition in east China was computed through a policy-oriented, two-dimensional Eulerian model for long-range transport and deposition of SO2 and SO4(2-). The model predictions were in accordance with the wet deposition monitored. Results show that concentrations of SO2 and SO4(2-) are higher in north China than those in the south, and high deposition of sulfur occurs in most areas of North China, in the lower reaches of the Changjiang (Yangtze) River and around Chongqing and Guiyang in southwest China. Total emission of SO2 from the modeling region (from 19 degrees N to 42 degrees N, and from 104 degrees E to 124 degrees E) was about 20 million tons in 1995. The model predicts that 48% of this deposits within the region as dry deposition, 38% deposits as wet deposition, and only about 14% was transported out of the region. The modeling results of sulfur deposition were directly applied in designating acid rain control zones in China, and the emission-deposition relationship derived was also used to formulate middle- and long-range planning programs for regional acid rain control in China.  相似文献   

20.
The concentrations of selenium in 10 catchments of a stream network in northern Sweden were monitored over two years, yielding almost 350 observations of selenium concentrations in streamwater. The export of selenium was found to be systematically greater from forests than from mires. Accounting for atmospheric deposition, which was monitored over four years, there was a net accumulation of selenium in mires, while the export from forest soils was approximately equal to the atmospheric deposition. In forest dominated catchments the concentrations of selenium oscillated rapidly back and forth from high to low levels during spring floods. High selenium concentrations coincided with rising groundwater tables in the riparian forest soils, while low selenium concentrations were associated with receding groundwater. Thermodynamic modeling indicated that precipitation of elemental selenium would occur under reducing conditions in the riparian soils. Since changes in the redox conditions are likely to occur near the transition from the unsaturated to the saturated zone, it is hypothesized that the transport of selenium from forest soils to streams is controlled by redox reactions in riparian soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号