首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oblivious key transfer (OKT) is a fundamental problem in the field of secure multi-party computation. It makes the provider send a secret key sequence to the user obliviously, i.e., the user may only get almost one bit key in the sequence which is unknown to the provider. Recently, a number of works have sought to establish the corresponding quantum oblivious key transfer model and rename it as quantum oblivious key distribution (QOKD) from the well-known expression of quantum key distribution (QKD). In this paper, a new QOKD model is firstly proposed for the provider and user with limited quantum capabilities, where both of them just perform computational basis measurement for single photons. Then we show that the privacy for both of them can be protected, since the probability of getting other’s raw-key bits without being detected is exponentially small. Furthermore, we give the solutions to some special decision problems such as set-member decision and point-inclusion by announcing the improved shifting strategies followed QOKD. Finally, the further discussions and applications of our ideas have been presented.  相似文献   

2.
《Optoelectronics, IET》2008,2(5):195-200
Experimental one-way decoy pulse quantum key distribution running for 25 h over a fibre distance of 25 km is reported. The decoy pulse protocol employed uses two weak pulses (signal and decoy) and one vacuum pulse. In parallel to the key sifting, simultaneous error correction and privacy amplification yielding a final, average secure key rate of 5.7 kbps are performed. The random bits from the secure keys are found to pass stringent statistical tests.  相似文献   

3.
Real-time phase tracking in single-photon interferometers   总被引:1,自引:0,他引:1  
A new technique for phase tracking in quantum cryptography systems is proposed that adjusts phase in an optimal way, using only as many photon counts as necessary. We derive an upper bound on the number of photons that need to be registered during phase adjustment to achieve a given phase accuracy. It turns out that most quantum cryptosystems can successfully track phase on a single-photon level, entirely with software, without any additional hardware components or extensive phase-stabilization measures. The technique is tested experimentally on a quantum cryptosystem.  相似文献   

4.
We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit–cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.  相似文献   

5.
Defense frontier analysis of quantum cryptographic systems   总被引:1,自引:0,他引:1  
Slutsky B  Rao R  Sun PC  Tancevski L  Fainman S 《Applied optics》1998,37(14):2869-2878
When a quantum cryptographic system operates in the presence of background noise, security of the key can be recovered by a procedure called key distillation. A key-distillation scheme effective against so-called individual (bitwise-independent) eavesdropping attacks involves sacrifice of some of the data through privacy amplification. We derive the amount of data sacrifice sufficient to defend against individual eavesdropping attacks in both BB84 and B92 protocols and show in what sense the communication becomes secure as a result. We also compare the secrecy capacity of various quantum cryptosystems, taking into account data sacrifice during key distillation, and conclude that the BB84 protocol may offer better performance characteristics than the B92.  相似文献   

6.
Modifying the photonic environment of a semiconductor quantum well by embedding it in a high-reflectivity microcavity gives rise to new fundamental optical excitations, half-quantum well excitons, half-photons. These particles, called polaritons, have a light mass, as cavity photons, meaning that they have a large De Broglie wavelength. On the other hand, polaritons, like excitons, are subject to Coulomb interaction, a feature generating strong optical nonlinearities. Such properties favour quantum degeneracy and collective phenomena related to the bosonic statistics of polaritons. We review experiments on stimulated scattering of polaritons. In particular we concentrate on the resonant excitation of polaritons somewhere on the dispersion curve and the stimulation of their scattering into the fundamental state by means of an optical probe beam. The process is called polariton parametric amplification and results in very large and ultrafast optical amplification of the probe beam. The model, based on a Hamiltonian of interacting bosons, suggests that the amplification is related to the coherence between polaritons. We demonstrate that in clearly designed samples, this coherence can be preserved almost up to room temperature, so that intersting applications of this phenomenon can be conceived. At the same time we have been able to improve dramatically the efficiency of the parametric process, making the microcavity an unprecedented optical amplifier.  相似文献   

7.
We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and engineered in both real and momentum space. The photon beaming is achieved using the enhanced resonant coupling of the quantum dots to these Bragg cavity modes, which dominates the emission properties of the quantum dots. We show that the emission probability of a quantum dot into the narrow angular mode is 20 times larger than the emission probability to all other modes. Engineering nanocrystal quantum dots with subwavelength metallic nanostructures is a promising way for a range of new types of active optical devices, where spatial control of the optical properties of nanoemitters is essential, on both the single and many photons level.  相似文献   

8.
Blueshift of optical absorption and corresponding widening of the bandgap is a fundamental problem with 2D carbon nitride nanosheets (CNNS). An additional problem is low quantum yields (<9%) due to higher loss of absorbed photons. These problems impose a significant restriction to photocatalytic performance of CNNS. Therefore, the synthesis of narrow bandgap CNNS with high quantum efficiency is of pressing research importance. This contribution reports melem‐derived narrow bandgap CNNS with a record‐low bandgap of 2.45 eV. The narrowing in bandgap comes with improved optical absorption and use of visible‐light photons together with excellent charge transport dynamics. This is demonstrated by a record high hydrogen evolution rate of 863 µmol h?1 with apparent quantum efficiency of 16% at 420 nm.  相似文献   

9.
We propose a scheme for implementing a multipartite quantum filter that uses entangled photons as a resource. It is shown that the success probability for the 2-photon parity filter can be as high as 1/2, which is the highest that has so far been predicted without the help of universal two-qubit quantum gates. Furthermore, the required number of ancilla photons is the least of all current parity filter proposals. Remarkably, the quantum filter operates with probability 1/2 even in the N-photon case, irregardless of the number of photons in the input state.  相似文献   

10.
Abstract

We analyse the information obtained by an eavesdropper during the various stages of a quantum cryptographic protocol associated with key distribution. We provide both an upper and a lower limit on the amount of information that may have leaked to the eavesdropper at the end of the key distribution procedure. These limits are restricted to intercept/resend eaves-dropping strategies. The upper one is higher than has been estimated so far, and should be taken into account in order to guarantee the secrecy of the final key, which is subsequently obtained via the so-called privacy amplification.  相似文献   

11.
In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.  相似文献   

12.
13.
Quantum communication systems based on nanoscale semiconductor devices is challenged by inhomogeneities from device to device. We address this challenge using ZnMgSe/ZnSe quantum-well nanostructures with local laser-based heating to tune the emission of single impurity-bound exciton emitters in two separate devices. The matched emission in combination with photon bunching enables quantum interference from the devices and allows the postselection of polarization-entangled single photons. The ability to entangle single photons emitted from nanometer-sized sources separated by macroscopic distances provides an essential step for a solid-state realization of a large-scale quantum optical network. This paves the way toward measurement-based entanglement generation between remote electron spins localized at macroscopically separated fluorine impurities.  相似文献   

14.
Topological phases play a novel and fundamental role in matter and display extraordinary robustness to smooth changes in material parameters or disorder. A crossover between topological material and quantum information may lead to inherent fault‐tolerant quantum simulations and quantum computing. Quantum features may be preserved by being encoded among topological structures of physical evolution systems. This requires stimulation, manipulation, and observation of topological phenomena at the single quantum particle level, which has not, however, yet been realized. It is asked whether the quantum features of single photons can be preserved in topological structures. The boundary states are experimentally observed at the genuine single‐photon level and the performance of the topological phase is demonstrated to protect the quantum features against diffusion‐induced decoherence in coupled waveguides and noise decoherence from the ambient environment. Compatibility between macroscopic topological states and microscopic single photons in the ambient environment is thus confirmed, leading to a new avenue to “quantum topological photonics” and providing more new possibilities for quantum materials and quantum technologies.  相似文献   

15.
Ackermann GK  Eichler J 《Applied optics》2008,47(30):5660-5667
It is shown that a holographic setup for real-time interferometry can be used to realize a quantum eraser (QE) experiment. Circular polarized light is used to distinguish between the photons of the reconstructed image of the object and the direct object wave consisting of scattered photons from the illuminated flat object. To erase the "which path information," a linear polarizer is used. The experimental results show that polarized light, after depolarizing reflection from a dielectric surface, contains an internal polarization structure, which can be described extending the well-known Jones vector formalism.  相似文献   

16.
We present time-resolved diffraction and two-slit interference experiments using a streak camera as a detector for femtosecond pulses of photons. These experiments show how the diffraction pattern is built by adding frames of a few photons to each frame. It is estimated that after 300 photons the diffraction pattern emerges. With time resolution we can check the speed of light and put an upper limit of 2 ps at our resolution to the time for wave function collapse in the quantum measurement process. We then produce interference experiments with photons of different energies impinging on the slits, i.e. we know which photon impinges on each slit. We show that for poor time resolution, no interference is observed, but for high time resolution, we have interference that is revealed as beats of 100 GHz frequency. The condition for interference is that the two pulses should overlap spatially at the detector, even if the pulses have different energies but are generated from the same pulse of the laser. The interference seems to be in agreement with classical theory at first sight. However, closer study and analysis of the data show deviations in the visibility of the interference fringes and of their phase. These experiments are discussed in connection with quantum mechanics and it may be concluded that the time resolution provides new data for understanding the longstanding and continuing arguments on wave-particle duality initiated by Newton, Young, Fresnel, Planck and others. A thought experiment is presented in the appendix to try to distinguish the photons at the detector by making it sensitive to colour.  相似文献   

17.
Zou J  Zhang Y  Deng W  Jin J  Chang B 《Applied optics》2011,50(27):5228-5234
The quantum efficiency equations of two different structure reflection-mode GaAs photocathodes with back interface recombination velocity have been solved from the diffusion equations. One structure consists of GaAs substrate and an epitaxial GaAs active layer (GaAs-GaAs) and another structure consists of GaAs substrate, an epitaxial AlGaAs buffer layer, and a GaAs active layer (AlGaAs-GaAs). The experimental results show that the quantum efficiency of long-wavelength photons and the integral sensitivities for GaAs-GaAs cathodes both increase with the increase in the active layer thickness, which is due to the increase of electron diffusion length. The quantum efficiency of long-wavelength photons and the integral sensitivity of AlGaAs-GaAs cathodes are greater than those of GaAs-GaAs cathodes with an identical active layer thickness, which is attributed to the AlGaAs buffer layer. The buffer layer can reflect electrons and improve the quality of the GaAs active layer. Through the theoretical simulation, we found the active layer thickness for AlGaAs-GaAs cathodes has an optimum value at which the cathodes achieve the maximum sensitivity.  相似文献   

18.
《Journal of Modern Optics》2013,60(8):1609-1614
Recently several methods have been proposed for generation of superposition (Schrödinger cat) states in microwave cavities. At microwave frequencies thermal photons can significantly affect statistical properties of superposition states. In the present letter we study the influence of a thermal heatbath on non-classical properties of quantum superposition states. We show that at non-zero temperatures the loss of quantum coherences is much faster than at zero temperature and that the sensitivity of the quantum coherence to the presence of thermal photons can lead to some difficulties in the preparation of Schrödinger cat states in microwave cavities unless the temperature of the microwave cavity is sufficiently low.  相似文献   

19.
We introduce the concept of encoding and manipulation of information on single photons. This is exploited in the technique of quantum cryptography to distribute random bit strings in a secure way. More general quantum information processing requires a conditional interaction between separate photons. This can be achieved by exploiting the interference between two photons at a beam-splitter and the non-linearity inherent in detection. As yet the efficiency of such gates is low.  相似文献   

20.
Abstract

In this paper, we shall discuss a generalized version of the Jaynes-Cummings model in which a two-level atom is coupled to multichromatic waves with general frequencies and coupling constants. We shall show that this two-level atom system can be mapped into an effective model in which a quantum particle moves in a lattice whose sites specify the number of photons in the multichromatic waves. In general, when the number L of modes is greater than two, large energy exchanges among different monochromatic waves are possible (L = 2 is a special case; exchanges of a large number of photons are possible only for degenerate modes). Depending on the frequencies of the elecromagnetic modes, we can classify the two-level systems in two categories. In one case, the eigenfunctions of the quantum particle are extended and thus exchange of a large number of photons is possible. In the other case, the eigenfunctions of the quantum particle are localized and exchange of a large number of photons is greatly suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号