首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coarse-grained silicon films for crystalline silicon thin-film solar cells have been prepared by zone melting recrystallization. A zone melting heater was modified to obtain better temperature homogeneity of the sample and higher reproducibility of the melt process. Various substrate materials of different purity and surface roughness have been tested concerning their suitability for, silicon deposition, zone melting and solar cell process. Solar cell efficiencies up to 10.5% could be achieved on silicon sheets from powder, capped by an intermediate layer. Silicon films on SiAlON ceramics were successfully processed to solar cells by a completely dry solar cell process.  相似文献   

2.
In this work silicon nitride (Si3N4) film was deposited as an antireflection coating (ARC) on crystalline silicon solar cell (cell?A) using plasma-enhanced chemical vapor deposition (PECVD). Two solar cells XA and XB of approximately equal area were diced from cell#A and characterized by angle-dependent X-ray photoelectron spectroscopy (XPS). The XPS profiling shows the presence of silicon (Si), nitrogen (N), carbon (C) and oxygen (O) in the Si3N4 film. The presence of C and O indicates that organic substances, involved in processing steps were not released completely from the surface and may diffuse in Si3N4 ARC during deposition. The XPS spectra corresponding to Si2p, N1s, C1s and O1s were recorded at angles 0° (normal to the surface), 30° and 45°, as angle increases spectra becomes more surface sensitive. Peak positions in Si2p and N1s spectra explain the oxygen contamination in the Si3N4 film. The shift in the peak positions of C1s and O1s as angle increases from 0° to 45° explains the surface contamination of carbon and oxygen. The atomic composition of elements Si, N, C and O show more carbon, oxygen concentration and smaller N/Si ratio than stoichiometry, i.e. Si3N4 in cell XB. However, cell XA not only show better photovoltaic performance in terms of parameters open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and efficiency (η) but also have more uniform texturization and regular pyramids on the surface as revealed by scanning electron microscopy (SEM). The presence of higher concentration of impurities (carbon and oxygen), non-uniformity in texturization and in the Si3N4 film as well could be responsible for less satisfactory photovoltaic performance of cell XB.  相似文献   

3.
Overview on SiN surface passivation of crystalline silicon solar cells   总被引:2,自引:0,他引:2  
Silicon nitride (SiN) fabricated by plasma-enhanced chemical vapour deposition (PECVD) is increasingly used within the crystalline silicon (c-Si) photovoltaic industry as it offers the possibility to fabricate a surface and bulk passivating antireflection coating at low temperature (450°C). This article presents an overview on the present status of SiN for industrial as well as laboratory-type c-Si solar cells. Topics covered include the fundamentals of the PECVD technology, the present status of high-throughput PECVD machines for the deposition of SiN onto c-Si wafers, and a review of the fundamental properties of Si–SiN interfaces fabricated by PECVD.  相似文献   

4.
Direct liquid-immersion cooling of concentrator solar cells was proposed as a solution for receiver thermal management of concentrating photovoltaic (CPV) and hybrid concentrating photovoltaic thermal (CPV-T) systems. De-ionized (DI) water, isopropyl alcohol (IPA), ethyl acetate, and dimethyl silicon oil were selected as potential immersion liquids based on optical transmittance measurement results. Improvements to the electrical performance of silicon CPV cells were observed under a range of concentrations in the candidate dielectric liquids, arising from improved light collection and reduced cell surface recombination losses from surface adsorption of polar molecules. Three-dimensional numerical simulations with the four candidate liquids as the working fluids, exploring the thermal performance of a silicon CPV cell array in a liquid immersion prototype receiver, have been performed. Simulation results show that the direct-immersion cooling approach can maintain low and uniform cell temperature in the designed liquid immersion receiver. The fluid inlet velocity and flow mode, along with the fluid thermal properties, all have a significant influence on the cell array temperature.  相似文献   

5.
The efficiency of a solar cell is given by its average electrical parameters. On inhomogeneous materials and especially on large-area solar cells the inhomogeneity of the short circuit current, the open circuit voltage and the fill factor are important factors to reach high and stable efficiencies and may limit the overall performance of the device.A locally increased dark forward current (shunt) reduces the fill factor and the open circuit voltage of the whole cell. The inhomogeneity of the forward current in a solar cell can be measured using lock-in thermography. The quantitative and voltage-dependent evaluation of these thermographic investigations of various solar cell types on mono- or multi-crystalline silicon enables the classification of the different shunting mechanisms found. By further microscopic investigations the physical reasons for the increased dark forward currents can be determined.It turns out that a high density of crystallographic defects like dislocation tangles or microdefects can be responsible for an increased dark forward current. Unexpectedly, grain boundaries in solar cells on multicrystalline silicon do not show any measurable influence on the local dark forward current. In most cases shunts caused by process-induced defects are dominating the current–voltage characteristic at the maximum power point of the solar cell. In commercial solar cells shunts at the edges are most important, followed by shunts beyond the grid lines.  相似文献   

6.
Recently, the impurity photovoltaic effect (IPV) was proposed to improve the solar cell performance. Free electron–hole pairs can be generated in a two-step process involving an impurity level in the energy gap and two lower-energy photons: first electrons are optically excited from the valence band to the defect level and then from the defect level to the conduction band. The IPV effect will thus enhance the long-wavelength response of the cell.A significant amount of theoretical work has been carried out on IPV effect in the literature, particularly on silicon solar cells with indium impurities as defect. However, the lack of an easily available solar cell simulator including the IPV effect is a handicap.In this work, the numerical solar cell simulator SCAPS of the ELIS group was extended to include IPV in collaboration between the ELIS and the LPDS groups. Also, some special features are implemented, such as the calculation of electron and hole photoemission cross-sections of the impurity using the model of Lucovsky. The functionality of new SCAPS version was checked against existing results in the literature. Also, new results are presented such as the evolution of solar cell parameters with the indium density. We find that increasing indium concentration can improve silicon solar cell parameters, especially the short-circuit current and the efficiency, without drastically decreasing the open-circuit voltage. This is possible if a suitable structure for the cell is chosen. The optimum indium density should be equal around the base region density to obtain a positive benefit from the IPV effect.Light trapping, which is related to the internal reflectance at the front and the back of the cell, is very important in the IPV study. Reflectivity at the front and the back should exceed 99.9% to obtain a real efficiency increase. We calculate an improvement of about 6 mA/cm2 in the photocurrent, and about 2% for the efficiency, which is due to the enhancement of long-wavelength absorption by the IPV effect.  相似文献   

7.
The newly developed ingot growing techniques, as the three-grain and the columnar multigrain ingot processes, are now offering the possibility of slicing thinner wafers (≤ 100 μm). In this paper we present the results obtained on p type large area (≥ 100 cm2) and 100 μm thick wafers by using both conventional and reverse cell manufacturing technologies.The conventional cells are provided with aluminium or boron BSF plus screen-printed silver mirror or a silver-aluminium net; the reverse cells have a FSF and the deep back junction completely covered by a screen-printed or CVD silver layer.The constructing parameters have been chosen on the base of one and two dimensions modeling and both raw material and devices have been completely characterized.This work shows that very thin wafers do not introduce serious problems for the conventional manufacturing of solar cells. The efficiencies of the normal and of the reverse cells are found to be comparable and are of the same order than those of thicker cells, however at a significant lower cost. The main obtained result has to be related to the demonstration of a cell manufacturing feasibility starting from very thin wafers.  相似文献   

8.
In this work the results of a structural investigation by SEM of porous silicon (PS) before and after diffusion processes are reported. The formation of PS n+/p structures were carried out on PS p/p silicon wafers with two methods: from POCl3 in a conventional furnace and from a phosphorous doped paste in an infrared furnace. Sheet resistance was found to be a strong function of PS structure. Further details on sheet resistance distribution are reported. The electrical contacts in prepared solar cells were obtained by screen printing process, with a Du Ponte photovoltaic silver paste for front contacts and home-prepared silver with 3% aluminium paste for the back ones. Metallization was done in the infrared furnace. Solar cell current–voltage characteristics were measured under an AM 1.5 global spectrum sun simulator. The average results for multi-crystalline silicon solar cells without antireflection coating are: Isc=720 (mA), Voc=560 (mV), FF=69%, Eff=10.6% (area 25 cm2).  相似文献   

9.
We report the fabrication of buried contact solar cells using porous silicon as sacrificial layer to create well-defined channels (for buried contacts) in silicon. In this paper, the salient features of the technology have been presented. No detrimental effect was found in the performance of buried contact solar cell with partially filled contact area compared to the solar cells having conventional planar contacts. However, a marked difference in the short circuit current density was seen when channel was fully filled with metal by screen printing, without degradation in the open-circuit voltage. It is expected that improved processing in combination with optimized buried metallic contact parameters may yield higher efficiencies that may result in substantial decrease in solar cell cost.  相似文献   

10.
Micro-cracks in wafer based silicon solar cell modules are nowadays identified by a human observer with the electroluminescence (EL) method. However, the essential question of how the micro-cracks affect the PV module performance has yet to be answered. We experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. We show that the immediate effect of micro-cracks on the module power is small, whereas the presence of micro-cracks is potentially crucial for the performance of the module after artificial ageing. This confirms the necessity to develop the means of quantifying the risk of power loss in PV modules with cracked solar cells in their lifetime, in order to enable manufacturers to discard defective modules with high risk of failure while keeping modules with uncritical micro-cracks. As a first step towards risk estimation we develop an upper bound for the potential power loss of PV modules due to micro-cracks in the solar cells. This is done by simulating the impact of inactive solar cell fragments on the power of a common PV module type and PV array. We show that the largest inactive cell area of a double string protected by a bypass diode is most relevant for the power loss of the PV module. A solar cell with micro-cracks, which separate a part of less than 8% of the cell area, results in no power loss in a PV module or a PV module array for all practical cases. In between approximately 12 and 50% of inactive area of a single cell in the PV module the power loss increases nearly linearly from zero to the power of one double string.  相似文献   

11.
Silicon nitride offers many potential benefits to the family of buried contact fabrication sequences including improved design flexibility and efficiency. The main device structures of the buried contact family comprise the standard buried contact, the simplified buried contact and the double-sided buried contact cells. The physical properties of silicon nitride allow it to be used for surface passivation, as an anti-reflection coating, as a diffusion source material and as a masking dielectric. The use of silicon nitride in each buried contact fabrication sequence is described in this work.  相似文献   

12.
The carrier lifetime of crystalline silicon wafers that were passivated with hydrogenated silicon nitride (SiNx:H) films using plasma enhanced chemical vapor deposition was investigated in order to study the effects of hydrogen plasma pre-treatment on passivation. The decrease in the native oxide, the dangling bonds and the contamination on the silicon wafer led to an increase in the minority carrier lifetime. The silicon wafer was treated using a wet process, and the SiNx:H film was deposited on the back surface. Hydrogen plasma was applied to the front surface of the wafer, and the SiNx:H film was deposited on the hydrogen plasma treated surface using an in-situ process. The SiNx:H film deposition was carried out at a low temperature (<350 °C) in a direct plasma reactor operated at 13.6 MHz. The surface recombination velocity measurement after the hydrogen plasma pre-treatment and the comparison with the ammonia plasma pre-treatment were made using Fourier transform infrared spectroscopy and secondary ion mass spectrometry measurements. The passivation qualities were measured using quasi-steady-state photoconductance. The hydrogen atom concentration increased at the SiNx:H/Si interface, and the minority carrier lifetime increased from 36.6 to 75.2 μs. The carbon concentration decreased at the SiNx:H/Si interfacial region after the hydrogen plasma pre-treatment.  相似文献   

13.
晶体硅太阳电池制备工艺进展   总被引:2,自引:0,他引:2  
晶体硅太阳电池是目前应用最广、技术最为成熟的太阳电池,以晶体硅太阳电池生产流程为基础.主要从降低生产成本和提高电池转换效率方面出发,介绍了太阳电池制备工艺的最新进展,并对各种制备工艺作出了评价和展望。  相似文献   

14.
The hydrogenated silicon nitride films (SiNx:H) deposited by plasma enhanced chemical vapor deposition (PECVD) technique is commonly used as an antireflection coating as well as surface passivating layer of crystalline silicon solar cells. The refractive indices of SiNx:H films could be changed by varying the growth gas ratio R(=NH3/SiH4+NH3) and annealing temperature. For optimum SiNx:H film, the optical and chemical characterization tools by varying the film deposition and annealing condition were employed in this study. Metal-insulator-semiconductor (MIS) devices were fabricated using SiNx:H as an insulator layer and they were subjected to capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization. The effect of rapid thermal annealing (RTA) on the surface passivation as well as antireflection properties of the SiNx:H films deposited at various process conditions were also investigated for the fabrication of low cost and high efficiency silicon solar cells.  相似文献   

15.
Introduction of deep level defects during thermal diffusion of phosphorous (P) in silicon (Si) using spin-on-doping (SOD) from phosphosilicate glass (PSG) was studied using deep level transient spectroscopy (DLTS). The structure was utilized as a solar cell and defect-induced-degradation of the cell efficiency was studied and modeled. The light current-voltage (LIV) measurements performed on as-fabricated solar cell yielded open circuit voltage, short-circuit current density, fill factor (FF) and efficiency to be 540 mV, 24 mA/cm2, 40% and 5%, respectively. Whilst the simulation of the similar solar cell using AFORS-HET software revealed significantly higher data than the experimental ones. However, by including three deep level defects H1-H3 (holes) having activation energies (eV) 0.23, 0.33 and 0.41 in the modeled solar cell, the simulated results were observed in remarkably good agreement with experimental data. Our DLTS measurements practically witnessed H1-H3 defect levels in p-layer of the cell.  相似文献   

16.
The development of crystalline silicon solar cells is traced from their invention to the present day, with an emphasis on the major advances (“milestones”) along the way. The survey covers cells for power generation in space as well as those for terrestrial applications.  相似文献   

17.
In this paper, we present data on the electrical properties of 50 gm thick space silicon BSFR cells irradiated with 10 MeV protons with a fluence exceeding 1 x 1013 p/cm2 and irradiated with 1 MeV electrons with a fluence exceeding 1 x 1016 e/cm2, and discuss the anomalous degradation which was found in these large-fluence regions. These data show an increase of saturation current density and a decrease of diffusion voltage of the pn junction, and a decrease of majority carrier density and an increase of series resistance of the p-substrate as a result of the formation of a large amount of carrier traps by the large-fluence irradiation.  相似文献   

18.
Main photovoltaic properties of polycrystalline silicon solar cells are often affected by dislocation effects. Dislocations degrade functional photocurrent and considerably alter relevant parameters such as short-circuit current density, dark current intensity and open-circuit voltage. In this study, we have developed an enhanced photothermal technical protocol for diagnosing dislocation spatial distribution inside photovoltaic polycrystalline silicon solar cells. We tried to establish a qualitative and quantitative correlation between the local thermal properties alteration and dislocation spatial range. Experimental imaging profiles, yielded by this technique are compared to other diagnostic techniques results.  相似文献   

19.
Texturing the surfaces of silicon wafer is one of the most important ways of increasing their efficiencies. The texturing process reduces the surface reflection loss through photon trapping, thereby increasing the short circuit current of the solar cell. The texturing of crystalline silicon was carried out using alkaline solutions. Such solutions resulted in anisotropic etching that leads to the formation of random pyramids. Before the texturing process was carried out, saw-damage etching was performed in order to remove the surface defects and damage caused by wire sawing. In general, potassium hydroxide (KOH) solution has been used for saw-damage etching. This etching results in a fairly flat surface. The results from this study showed that the outcome of the surface texturing is related to the original surface morphology of the silicon. It was found that saw-damage etching using an acidic solution improved the effects of the texturing. In this case, regular and small pyramids were formed on the surface of the silicon. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell.  相似文献   

20.
Hybrid solar cells are fabricated on the glass substrate using well-aligned single-crystalline Si nanowires (SiNWs) and poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM). Their key benefits are discussed. The well-aligned SiNWs are fabricated from Si wafer and transferred onto the glass substrate with the P3HT:PCBM. Such SiNWs provide uninterrupted conduction paths for electron transport, enhance the optical absorption to serve as an interesting candidate of the absorber, and increase the surface area for exciton dissociation. Our investigations show that SiNWs are promising for hybrid organic photovoltaic cells with improved performance by increasing the short-circuit current density from 7.17 to 11.61 mA/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号