首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In the current global energy scenario, fossil fuels face challenges with regards to exorbitant demand, environmental hazards and escalating costs. In this regard, the technical community is in quest for alternative resources. In this context, biodiesel fuel is potentially considered as alternative fuels for compression ignition engines. Hence, in this current investigation, biodiesel and biodiesel emulsions are prepared from a vegetable oil and further subjected for the blending with potential additives such as CNT (Carbon Nanotubes) and DEE (Di-Ethyl Ether) to improve the working attributes of the diesel engine. The entire investigation was carried out in five stages. In the first stage, both pure diesel and biodiesel (derived from jatropha oil) fuels were tested in the diesel engine to obtain baseline readings. In the second stage, water–biodiesel emulsion fuel was prepared in the proportion of 91% of biodiesel, 5% of water and 4% of emulsifiers (by volume). In the third stage, 50 ppm of CNT, 50 ml of DEE and combined mixture of CNT+DEE (50 ppm CNT+50 ml DEE) were mixed with the water–biodiesel emulsion fuel separately to prepare the CNT and DEE blended water–biodiesel emulsion fuels respectively. In fourth stage, the prepared emulsion fuels were subjected to stability investigations. In the fifth stage, all the prepared stable emulsion fuels were subjected for experimental testing in a diesel engine. It was observed that the CNT and DEE blended biodiesel emulsion fuels reflected better performance, emission and combustion attributes than that of pure diesel and biodiesel. At the full load, the brake thermal efficiency, NO and smoke emission of CNT+DEE fuels was 28.8%, 895 ppm and 36%, whereas it was 25.2%, 1340 ppm and 71% for pure diesel respectively. It was also observed that on adding CNT and DEE with the biodiesel emulsion fuels, the ignition delay was shortened and henceforth, the additive blended biodiesel emulsion fuels exhibited higher brake thermal efficiency and reduced emissions (NO, smoke) than that of pure diesel and biodiesel.  相似文献   

2.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

3.
In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The important properties of biodiesel were compared with those of diesel. Diesel and biodiesel were used as fuels in the compression ignition engine, and its performance, emissions and combustion characteristics of the engine were analyzed. The results showed that biodiesel exhibited the similar combustion stages to that of diesel, however, biodiesel showed an earlier start of combustion. At lower engine loads, the peak cylinder pressure, the peak rate of pressure rise and the peak of heat release rate during premixed combustion phase were higher for biodiesel than for diesel. At higher engine loads, the peak cylinder pressure of biodiesel was almost similar to that of diesel, but the peak rate of pressure rise and the peak of heat release rate were lower for biodiesel. The power output of biodiesel was almost identical with that of diesel. The brake specific fuel consumption was higher for biodiesel due to its lower heating value. Biodiesel provided significant reduction in CO, HC, NOx and smoke under speed characteristic at full engine load. Based on this study, biodiesel can be used as a substitute for diesel in diesel engine.  相似文献   

4.
The present paper examines the impact of mixed nanoadditive (Al2O3 and ZnO) incorporated diesel–water emulsion on the combustion, performance, and emission of a single‐cylinder diesel engine under varying load conditions. The test fuels consist of constant fuel ratio of 88% diesel, 10% water, and 2% surfactant. Also, different concentrations of mixed nanoadditives—50 ppm, 100 ppm, and 150 ppm—are added to the test fuel. The ultrasonicator bath is employed for agitation or stirring of test fuels. The test results indicate that the mixed nanoadditives in diesel–water emulsion improve combustion characteristics, brake thermal efficiency, and brake‐specific fuel consumption, whereas the maximum improvement is achieved at full load. It is also determined from the test results that the nanoadditive‐blended test fuel showed a noticeable decrement in CO, NOx, and hydrocarbon emissions as compared with neat diesel. The optimum results are obtained for D88S2W10ZA150 blend. Owing to the higher surface‐to‐volume ratio, enhanced atomization rate, high catalytic behavior, and shortened ignition delay are possible reasons to improve diesel engine working characteristics.  相似文献   

5.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

6.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

7.
The objective of this paper was to study the effects of the injection pressure and injection timing on the combustion and emission characteristics in a single-cylinder common-rail direct injection (CRDI) diesel engine fueled with waste cooking oil (WCO) biodiesel and commercial diesel fuel. The fuel property including fatty acid composition for the biodiesel were measured and compared with those of the conventional diesel fuel. The engine tests were conducted at two injection pressures (80 and 160 MPa) and different injection timings from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) under two different engine loads. The results showed that the indicated specific fuel consumption (ISFC) with respect to the injection timings of the biodiesel was higher than that of the diesel fuel under all experimental conditions. The peak cylinder pressure and the peak heat release rate of the biodiesel were slightly lower, while the ignition delay was slightly longer under all operating conditions. In terms of emissions, the biodiesel had benefits in reduction of smoke, carbon monoxide (CO), hydrocarbon (HC) emissions especially with high fuel injection pressure. The nitrogen oxide (NOx) emissions of the biodiesel were relatively higher than those of the diesel under all experimental conditions.  相似文献   

8.
One of the primary aims of this experimental investigation is to examine hydroxy-gas enrichment effects on environmentally friendly but performance-reducing alternative fuels such as ethanol and biodiesel. Hydroxy gas is a product of the pure water electrolysis method. Entire HHO system has integrated into engine test rig for this purpose. Two different biodiesohol fuel blend prepared and named by their volumetric compositions. Biodiesohol used to describe biodiesel, ethanol and standard diesel blends. Specific fuel properties are measured and ensured to be in EN590 and EN14214 standards. Experiments were conducted on a single cylinder diesel engine which was fuelled with diesel-biodiesel-ethanol fuel blends those enriched by 1 L per minute HHO gas during the entire tests. All of the experiments performed under full load condition within the range of 1200–3200 rpm engine speed. From the view of performance; brake power, brake specific fuel consumption and thermal efficiency results discussed. Besides, carbon monoxide and nitrogen oxides results measured and presented as exhaust emission. Standard diesel fuel outputs determined as a reference line to analyze the changes. A number of studies have been conducted with fuels used in this experimental study and their mixture in different ratios as well, but an examination of the HHO addition to biodiesel is performed for the first time in this research area of the literature.  相似文献   

9.
The increased focus on alternative fuels research in the recent years are mainly driven by escalating crude oil prices, stringent emission norms and the concern on clean environment. The processed form of vegetable oil (biodiesel) has emerged as a potential substitute for diesel fuel on account of its renewable source and lesser emissions. The experimental work reported here has been carried out on a turbocharged, direct injection, multi-cylinder truck diesel engine fitted with mechanical distributor type fuel injection pump using biodiesel-methanol blend and neat karanji oil derived biodiesel under constant speed and varying load conditions without altering injection timings. The results of the experimental investigation indicate that the ignition delay for biodiesel-methanol blend is slightly higher as compared to neat biodiesel and the maximum increase is limited to 1 deg. CA. The maximum rate of pressure rise follow a trend of the ignition delay variations at these operating conditions. However, the peak cylinder pressure and peak energy release rate decreases for biodiesel-methanol blend. In general, a delayed start of combustion and lower combustion duration are observed for biodiesel-methanol blend compared to neat biodiesel fuel. A maximum thermal efficiency increase of 4.2% due to 10% methanol addition in the biodiesel is seen at 80% load and 16.67 s−1 engine speed. The unburnt hydrocarbon and carbon monoxide emissions are slightly higher for the methanol blend compared to neat biodiesel at low load conditions whereas at higher load conditions unburnt hydrocarbon emissions are comparable for the two fuels and carbon monoxide emissions decrease significantly for the methanol blend. A significant reduction in nitric oxide and smoke emissions are observed with the biodiesel-methanol blend investigated.  相似文献   

10.
This paper analyzes the emissions of a single‐cylinder diesel engine fueled with biodiesel, using selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) techniques. The aim of this paper is to compare both EGR and SCR techniques, which were studied under different brake powers. Grape seed biodiesel was used as a test fuel. Experiments were performed by both techniques at different loads and rates to find out the performance change in the engine and the change in the emission rates using both the techniques. Then the observations from both the techniques were compared, concluding that both the techniques show a sufficient reduction in NOx. Using the abovementioned techniques, a reduction in hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and smoke was observed. The EGR technique is more suitable for low‐load engine vehicles, as it affects the efficiency of the engine with an increase in the fuel consumption, whereas the SCR technique is suitable for high‐load engines, which do not affect the efficiency of the engine with a decrease in the fuel consumption.  相似文献   

11.
研究了不同山茶油生物柴油比例混合燃料的热重特性,并在R180柴油机上进行试验,分析比较了柴油机的经济性和排放特性。结果表明:生物柴油与柴油混合性良好;不同燃料的热重特性基本相同;柴油机动力性没受明显影响;与柴油相比,混合燃料的当量燃油消耗率略为增加;CH排放降低;CO排放在中低负荷时降低,高负荷时增加;NOx排放在中间转速时随着生物柴油比例的提高先增加后降低,高速时降低。研究证明山茶油生物柴油用于柴油机具有良好的替代柴油、减少排放的效果。  相似文献   

12.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

13.
In this study, hybrid fuels consisting of rapeseed oil/diesel blend, 1% aqueous ethanol and a surfactant (oleic acid/1-butanol mixture) were prepared and tested as a fuel in a direct injection (DI) diesel engine. The main fuel properties such as the density, viscosity and lower heating value (LHV) of these fuels were measured, and the engine performance, combustion and exhaust emissions were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the hybrid fuels were decreased and close to that of diesel fuel with the increase of ethanol volume fraction up to 30%. The start of combustion was later than that of diesel fuel and the peak cylinder pressure, peak pressure rise rate and peak heat release rate were higher than those of diesel fuel. The brake specific fuel consumption (BSFC) of hybrid fuels was increased with the volume fraction of ethanol and higher than that of diesel. The brake specific energy consumption (BSEC) was almost identical for all test fuels. The smoke emissions were lower than those for diesel fuel at high engine loads, the NOx emissions were almost similar to those of diesel fuel, but CO and HC emissions were higher, especially at low engine loads.  相似文献   

14.
生物含氧燃料成分对柴油机性能影响的试验研究   总被引:9,自引:0,他引:9  
将占体积比80%的柴油分别掺混20%乙醇、20%生物柴油以及10%乙醇和10%生物柴油的混合物,连同纯柴油组成E20、B20、E10810和柴油共4种燃料,在一台4缸柴油机上进行燃烧、性能及排放特性试验研究。结果表明:含氧燃料成分的不同对折合油耗率基本不产生影响,但对燃烧和排放特性影响较大。发动机燃用E20的缸内最大爆发压力较柴油要大,B20、E10810较柴油要小;含氧燃料中生物柴油的加入使最大压力升高率减小,燃烧变得柔和;含氧燃料的放热时刻均落后于柴油的放热时刻。含氧燃料成分在中低负荷下对HC和CO的排放影响较大,随着含氧燃料中乙醇比例的增加HC和CO排放增加,在中高负荷下,3种含氧燃料的HC和CO排放基本相当;除了在2300r/min的中低负荷下含氧燃料的HC和CO排放较柴油高以外,其它工况下含氧燃料的HC和CO排放较柴油要低。含氧燃料成分不同对NOx排放的影响很小,3种含氧燃料的NOx排放都比柴油低。3种含氧燃料的碳烟排放较柴油要低,而且随含氧燃料中乙醇比例的增加,碳烟排放减小。  相似文献   

15.
This study investigates the use of ferric chloride (FeCl3) as a fuel borne catalyst (FBC) for waste cooking palm oil based biodiesel. The metal based additive was added to biodiesel at a dosage of 20 μmol/L. Experiments were conducted to study the effect of ferric chloride added to biodiesel on performance, emission and combustion characteristics of a direct injection diesel engine operated at a constant speed of 1500 rpm at different operating conditions. The results revealed that the FBC added biodiesel resulted in a decreased brake specific fuel consumption (BSFC) of 8.6% while the brake thermal efficiency increased by 6.3%. FBC added biodiesel showed lower nitric oxide (NO) emission and slightly higher carbon dioxide (CO2) emission as compared to diesel. Carbon monoxide (CO), total hydrocarbon (THC) and smoke emission of FBC added biodiesel decreased by 52.6%, 26.6% and 6.9% respectively compared to biodiesel without FBC at an optimum operating condition of 280 bar injection pressure and 25.5o bTDC injection timing. Higher cylinder gas pressure, heat release rate and shorter ignition delay period were observed with FBC added biodiesel at these conditions.  相似文献   

16.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

17.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   

18.
对乙醇和生物柴油的互溶性和抗水性进行了研究,在ZS195型柴油机上进行了燃用生物柴油、乙醇-生物柴油、含水乙醇-生物柴油与纯柴油的经济性与排放特性对比试验研究。试验结果表明:B90E10和B90A10混合燃料能在20℃环境温度下保持良好的物理稳定性;B90E10,B90A10和生物柴油有效燃油消耗率高于纯柴油;CO排放量,在小负荷时趋于纯柴油的排放水平,大负荷时下降;生物柴油NOx排放量在小负荷时高于纯柴油水平,而B90E10和B90A10较生物柴油依次下降,其中B90A10的NOx排放量低于纯柴油水平,大负荷时3种燃料的NOx排放量接近,均高于纯柴油水平;THC排放量均低于纯柴油水平,其中生物柴油下降幅度最大,B90E10下降幅度最小;碳烟排放较纯柴油大幅度下降,且随着燃料中含氧量的增加依次下降。  相似文献   

19.
An investigational analysis was performed to assess the effect of diethyl ether (DEE) that acts as an oxygenated additive in Jatropha biodiesel and diesel fuel blends on the performance enhancement and emission reduction of a variable compression ratio (CR) diesel engine. The DEE (10% vol) is added to different concentration levels of Jatropha biodiesel (B5, B10, and B20). The Jatropha biodiesel (JME) is prepared by the transesterification reaction and DEE is prepared through acid distillation of ethanol. The various tests were conducted by varying the loads at 25%, 50%, 75%, and 100% (3, 6, 9, and 12 kg). The DEE was entirely miscible with diesel and Jatropha biodiesel, the addition of DEE increases the cetane and calorific value, kinematic viscosity of the fuel blends compared with neat diesel or Jatropha biodiesel. The results illustrate that at higher loads and CRs, the engine performance parameters such as brake thermal efficiency enhances and reduces the brake-specific fuel consumption for DEE-Jatropha biodiesel-diesel fuel blends. Blend A3 (10% DEE + 20% JME + 70% diesel) demonstrated an overall improvement in the engine performance parameters and emission characteristics compared with A1, A2, and diesel fuel blends. It is concluded that the DEE-JME-diesel fuel blend is a promising source of fuel for diesel engine at maximum load.  相似文献   

20.
Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke variable compression ratio multi fuel engine fuelled with waste cooking oil methyl ester and its blends with standard diesel. Tests has been conducted using the fuel blends of 20%, 40%, 60% and 80% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 21 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency and exhaust gas temperature. The exhaust gas emission is found to contain carbon monoxide, hydrocarbon, nitrogen oxides and carbon dioxide. The results of the experiment has been compared and analyzed with standard diesel and it confirms considerable improvement in the performance parameters as well as exhaust emissions. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon, carbon dioxide at the expense of nitrogen oxides emissions. It has found that the combustion characteristics of waste cooking oil methyl ester and its diesel blends closely followed those of standard diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号