首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three renewable energy technologies (RETs) were analyzed for their feasibility for a small off-grid research facility dependent on diesel for power and propane for heat. Presently, the electrical load for this facility is 115 kW but a demand side management (DSM) energy audit revealed that 15–20% reduction was possible. Downsizing RETs and diesel engines by 15 kW to 100 kW reduces capital costs by $27 000 for biomass, $49 500 for wind and $136 500 for solar.The RET Screen International 4.0® model compared the economical and environmental costs of generating 100 kW of electricity for three RETs compared to the current diesel engine (0 cost) and a replacement ($160/kW) diesel equipment. At all costs from $0.80 to $2.00/l, biomass combined heat and power (CHP) was the most competitive. At $0.80 per liter, biomass’ payback period was 4.1 years with a capital cost of $1800/kW compared to wind's 6.1 years due to its higher initial cost of $3300/kW and solar's 13.5 years due to its high initial cost of $9100/kW. A biomass system would reduce annual energy costs by $63 729 per year, and mitigate GHG emissions by over 98% to 10 t CO2 from 507 t CO2. Diesel price increases to $1.20 or $2.00/l will decrease the payback period in years dramatically to 1.8 and 0.9 for CHP, 3.6 and 1.8 for wind, and 6.7 and 3.2 years for solar, respectively.  相似文献   

2.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

3.
This paper describes the size optimization of a hybrid photovoltaic/fuel cell grid linked power system including hydrogen storage. The overall objective is the optimal sizing of a hybrid power system to satisfy the load demand of a university laboratory with an unreliable grid, with low energy cost and minimal carbon emissions. The aim is to shift from grid linked diesel power system to a clean and sustainable energy system. The optimum design architecture was established by adopting the energy-balance methods of HOMER (hybrid optimization model for electric renewables). Analysis of hourly simulations was performed to decide the optimal size, cost and performance of the hybrid system, using 22-years monthly averaged solar radiation data collected for Ambrose Alli University, Ekpoma (Lat. 6°44.3ʹN, Long. 6°4.8ʹE). The results showed that a hybrid system comprising 54.7 kW photovoltaic array, 7 kW fuel cell system, 14 kW power inverter and 3 kW electrolyzer with 8 kg hydrogen storage tank can sustainably augment the erratic grid with a very high renewable fraction of 96.7% at $0.0418/kWh. When compared with the conventional usage of grid/diesel generator system; energy cost saving of more than 88% and a return on investment of 41.3% with present worth of $308,965 can be derived in less than 3 years. The application of the optimally sized hybrid system would possibly help mitigate the rural-to-urban drift and resolve the electricity problems hindering the economic growth in Nigeria. Moreover, the hybrid system can alleviate CO2 emissions from other power generation sources to make the environment cleaner and more eco-friendly.  相似文献   

4.
Because of biomass's limited supply (as well as other issues involving its feeding and transportation), pure biomass plants tend to be small, which results in high production and capital costs (per unit power output) compared with much larger coal plants. Thus, it is more economically attractive to co‐gasify biomass with coal. Biomass can also make an existing plant carbon‐neutral or even carbon‐negative if enough carbon dioxide is captured and sequestered (CCS). As a part of a series of studies examining the thermal and economic impact of different design implementations for an integrated gasification combined cycle (IGCC) plant fed with blended coal and biomass, this paper focuses on investigating various parameters, including radiant cooling versus syngas quenching, dry‐fed versus slurry‐fed gasification (particularly in relation to sour‐shift and sweet‐shift carbon capture systems), oxygen‐blown versus air‐blown gasifiers, low‐rank coals versus high‐rank coals, and options for using syngas or alternative fuels in the duct burner for the heat recovery steam generator (HRSG) to achieve the desired steam turbine inlet temperature. Using the commercial software, Thermoflow®, the case studies were performed on a simulated 250‐MW coal IGCC plant located near New Orleans, Louisiana, and the coal was co‐fed with biomass using ratios ranging from 10% to 30% by weight. Using 2011 dollars as a basis for economic analysis, the results show that syngas coolers are more efficient than quench systems (by 5.5 percentage points), but are also more expensive (by $500/kW and 0.6 cents/kW h). For the feeding system, dry‐fed is more efficient than slurry‐fed (by 2.2–2.5 points) and less expensive (by $200/kW and 0.5 cents/kW h). Sour‐shift CCS is both more efficient (by 3 percentage points) and cheaper (by $600/kW or 1.5 cents/kW h) than sweet‐shift CCS. Higher‐ranked coals are more efficient than lower‐ranked coals (2.8 points without biomass, or 1.5 points with biomass) and have lower capital cost (by $600/kW without using biomass, or $400/kW with biomass). Finally, plants with biomass and low‐rank coal feedstock are both more efficient and have lower costs than those with pure coal: just 10% biomass seems to increase the efficiency by 0.7 points and reduce costs by $400/kW and 0.3 cents/kW h. However, for high‐rank coals, this trend is different: the efficiency decreases by 0.7 points, and the cost of electricity increases by 0.1 cents/kW h, but capital costs still decrease by about $160/kW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Shafiqur Rehman  Luai M. Al-Hadhrami   《Energy》2010,35(12):4986-4995
This study presents a PV–diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2–1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system.  相似文献   

6.
This paper assesses economic feasibility of utilizing community-managed degraded forest areas for raising energy crops and using the produced biomass for electricity production in the state of Madhya Pradesh, India through gasification technology. Three fast-growing species, three gasifiers of different capacities, three capital costs, and two scenarios of carbon payments were considered for analysis. Sensitivity and risk analyses were undertaken for determining the effects of variations in inputs on selected outputs. Results suggest that 5 million megawatt hour electricity can be generated annually which will prevent 4 million tons of carbon dioxide emissions per year. The production cost of a unit of electricity was found inversely related to the scale of production. The average cost of electricity at the consumer level produced using 100 kW gasifier was $0.15/kWh, which was greater than the price of electricity supplied from grid i.e. $0.08/kWh. The unit cost of producing electricity using Acacia nilotica was lowest among all the selected species. Technological advancements suitable government incentives are needed to promote electricity generation from forest biomass through gasification technology. This will help in spurring economic development and reducing overall ecological footprint of the state.  相似文献   

7.
The provision of both electrical and mechanical energy services can play a critical role in poverty alleviation for the almost two billion rural users who currently lack access to electricity. Distributed generation using diesel generators remains a common means of electricity provision for rural communities throughout the world. Due to rising fuel costs, the need to address poverty, and consequences of global warming, it is necessary to develop cost efficient means of reducing fossil fuel consumption in isolated diesel microgrids. Based on a case study in Nicaragua, a set of demand and supply side measures are ordered by their annualized costs in order to approximate an energy supply curve. The curve highlights significant opportunities for reducing the costs of delivering energy services while also transitioning to a carbon-free electrical system. In particular, the study demonstrates the significant cost savings resulting from the implementation of conventional metering, efficient residential lighting, and electricity generation using renewable energy sources.  相似文献   

8.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

9.
The recent policy of the Malaysian government to promote use of renewable, especially photovoltaic, energy has warranted a feasibility study on supplementing diesel generation in off-grid sites by solar (photovoltaic) electricity to be done in the Malaysian context. This paper addresses the technical viability and economy of using a photovoltaic (PV) system to supplement an existing diesel generator-based supply in a typical secondary school located at an interior, off-grid and rural site of Sarawak state in East Malaysia. The findings of the present study, would therefore, help the Government with a realistic picture of the techno-economic aspects in implementing its vision regarding renewable energy. Presently, a 150 kW diesel generator supplies electricity to the considered school. The study required simulation of the load sharing pattern of the PV–diesel hybrid system taking into account varied weather and insolation conditions of the chosen site. Also, the purchase price as well as the size of the supplementing PV system that would give the lowest life cycle cost have been determined. The PV system was considered in both forms, i.e. with and without battery back-up. It has been found that if the market price for purchasing a PV system would drop to RM 11.02/WP (Ringgit Malaysia; US$1.00=RM 3.80) i.e. US$2.90/WP, a 35 kWP PV system without battery back-up in conjunction with the diesel generator would be able to supply the selected school’s demand at a marginally lower energy cost than the existing diesel-only system. With continuous research and developments, PV price would keep falling in the near future so that a PV–diesel hybrid system with a higher sized PV is expected to be economically more viable. The reported feasibility study can serve as a guideline for making similar studies in the context of another off-grid site.  相似文献   

10.
Solar/diesel/battery hybrid power systems have been modelled for the electrification of typical rural households and schools in remote areas of the far north province of Cameroon. The hourly solar radiation received by latitude-titled and south-facing modules was computed from hourly global horizontal solar radiation of Garoua using Hay's anisotropic model. Using the solar radiation computed for latitude-tilted and south-facing modules, the average daytime temperatures for Garoua and parameters of selected solar modules, the monthly energy production of the solar modules was computed. It was found that BP solar modules with rated power in the range 50–180 Wp produced energy in the range 78.5–315.2 kWh/yr. The energy produced by the solar modules was used to model solar/diesel/battery hybrid power systems that could meet the energy demand of typical rural households in the range 70–300 kWh/yr. It was also found that a solar/diesel/battery hybrid power system comprising a 1440 Wp solar array and a 5 kW single-phase generator operating at a load factor of 70%, required only 136 generator h/yr to supply 2585 kWh/yr or 7 kWh/day to a typical secondary school. The renewable energy fraction obtained in all the systems evaluated was in the range 83–100%. These results show that there is a possibility to increase the access rate to electricity in the far north province without recourse to grid extension or more thermal plants in the northern grid or more independent diesel plants supplying power to remote areas of the province.  相似文献   

11.
The levelized cost of hydrogen for municipal fuel cell buses has been determined using the DOE H2A model for steam methane reforming (SMR), molten carbonate fuel cell reforming (MCFC), and wood gasification using wastewater biogas and willow wood chips as energy feedstocks. 300 kg H2/day was chosen as the design capacity. Greenhouse gas emissions were calculated for each for the three processes and compared to diesel bus emissions in order to assess environmental impact. The levelized cost per kilogram for SMR, MCFC, and gasification is $5.12, $8.59, and $10.62, respectively. SMR provided the lowest sensitivity to feedstock price, and lowest levelized cost at various scales, with competitive cost to diesel on a cost/km basis. All three technologies provide a reduction in total greenhouse gases compared to diesel bus emissions, with MCFC providing the largest reduction. These results provide preliminary evidence that small scale distributed hydrogen production for public transportation can be relatively cost-effective and have minimal environmental impact.  相似文献   

12.
Wind–PV–diesel hybrid power generation system technology is a promising energy option since it provides opportunities for developed and developing countries to harness naturally available, inexhaustible and pollution-less resources. The aim of this study is to assess the techno-economic feasibility of utilizing a hybrid wind–PV–diesel power system to meet the load of Al Hallaniyat Island. Hybrid Optimization Model for Electric Renewables software has been employed to carry out the present study. The simulation results indicate that the cost of generating energy (COE) is $0.222 kWh?1 for a hybrid system composed of a 70 kW PV system, 60 kW wind turbine and batteries together with a 324.8 kW diesel system. Moreover, using the same system but without batteries will increase the COE to $0.225 kWh?1, the fuel consumption, the excess energy and the total operating hours for the diesel generators. The PV–wind hybrid option is techno-economically viable for rural electrification.  相似文献   

13.
《Biomass & bioenergy》2007,31(9):656-664
Around 76% of the 10,452 villages of Cambodia will still be without electricity in the year 2010. We examined the potential of biomass gasification fuelled by alternative resources of agricultural residues and woody biomass to increase rural power supply, using geographic and social economic databases provided by the Royal Government of Cambodia. About 77% of villages currently without electricity have sufficient land available for tree planting for electricity generation based on a requirement of 0.02 ha per household. Among 8008 villages with sufficient land, we assumed that those villages that had greater than 10% of households owning a television (powered by a battery or a generator) would have both a high electricity demand and a capacity to pay for electricity generation. Those 6418 villages were considered appropriate candidates for mini-grid installation by biomass gasification. This study demonstrated that while agricultural residues such as rice husks or cashew nut shells may have high energy potential, only tree farming or plantations would provide sufficient sustainable resources to supply a biomass gasification system. Cost per unit electricity generation by biomass gasification is less than diesel generation when the plant capacity factor exceeds 13%. In order to ensure long-term ecological sustainability as well as appropriate tree-farming technology for farmers, there is an urgent need for studies aimed at quantifying biomass production across multiple rotations and with different species across Cambodia.  相似文献   

14.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

15.
We develop a spatial electricity planning model to guide grid expansion in countries with low pre-existing electricity coverage. The model can be used to rapidly estimate connection costs and compare different regions and communities. Inputs that are modeled include electricity demand, costs, and geographic characteristics. The spatial nature of the model permits accurate representation of the existing electricity network and population distribution, which form the basis for future expansion decisions. The methodology and model assumptions are illustrated using country-specific data from Kenya. Results show that under most geographic conditions, extension of the national grid is less costly than off-grid options. Based on realistic penetration rates for Kenya, we estimate an average connection cost of $1900 per household, with lower-cost connection opportunities around major cities and in denser rural regions. In areas with an adequate pre-existing medium-voltage backbone, we estimate that over 30% of households could be connected for less than $1000 per connection through infilling. The penetration rate, an exogenous factor chosen by electricity planners, is found to have a large effect on household connection costs, often outweighing socio-economic and spatial factors such as inter-household distance, per-household demand, and proximity to the national grid.  相似文献   

16.
An assessment of the potential and economic viability of standalone hybrid systems for an off-grid rural community of Sokoto, North-west Nigeria was conducted. A specific electric load profile was developed to suite the community consisting 200 homes, a school and a community health center. The data obtained from the Nigeria Meteorological Department, Oshodi, Lagos (daily mean wind speeds, and daily global solar radiation for 24 years from 1987 to 2010) were used. An assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 3 stand-alone applications of photovoltaic (PV), wind and diesel, and 3 hybrid designs of wind-PV, wind-diesel, and solar-diesel. The diesel standalone system (DSS) was taken as the basis of comparison as the experimental location has no connection to a distribution network. The HOMER® software optimizing tool was engaged following the feasibility analysis with the RETScreen software. The wind standalone system (WSS) was found to be the optimal means of producing renewable electricity in terms of life cycle cost as well as levelised cost of producing energy at $0.15/(kW$h). This is competitive with grid electricity, which is presently at a cost of approximately $0.09/(kW$h) and 410% better than the conventional DSS at a levelized cost of energy (LCOE) of $0.62/kWh. The WSS is proposed for communities around the study site.  相似文献   

17.
In this study, a thermodynamic and economic analysis of a synthetic fuel production facility by utilizing the hydrogenation of CO2 captured from biogas is carried out. It is aimed to produce methanol, a synthetic fuel by hydrogenation of carbon dioxide. A PEM electrolyzer driven by grid-tie solar PV modules is used to supply the hydrogen need of methanol. The CO2 is captured from biogas produced in an actual wastewater treatment plant by a water washing unit which is a method of biogas purification. The required power which is generated by PV panels, in order to produce methanol, is found to be 2923 kW. Herein, the electricity consumption of 2875 kW, which is the main part of the total electricity generation, belongs to the PEM system. As a result of the study, the daily methanol production is found to be as 1674 kg. The electricity, hydrogen and methanol production costs are found to be $ 0.043 kWh?1, $ 3.156 kg?1, and $ 0.693 kg?1, respectively. Solar availability, methanol yield from the reactor, and PEM overpotentials are significant factors effecting the product cost. The results of the study presents feasible methanol production costs with reasonable investment requirements. Moreover, the efficiency of the cogeneration plant could be increased via enriching the biogas while emissions are reduced.  相似文献   

18.
Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory’s (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices.  相似文献   

19.
In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and In recent years, integrated gasification combined cycle technology has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration (CCS). This study focuses on investigating two approaches to improve efficiency and further reduce the greenhouse gas (GHG) emissions. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as feedstock to reduce emissions. Employing biomass as a feedstock has the advantage of being carbon neutral or even carbon negative if CCS is implemented. However, due to limited feedstock supply, such plants are usually small (2–50 MW), which results in lower efficiency and higher capital and production costs. Considering these challenges, it is more economically attractive and less technically challenging to co‐combust or co‐gasify biomass wastes with low‐rank coals. Using the commercial software, Thermoflow®, this study analyzes the baseline plants around 235 MW and 267 MW for the subcritical and supercritical designs, respectively. Both post‐combustion and pre‐combustion CCS conditions are considered. The results clearly show that utilizing a certain type of biomass with low‐rank coals up to 50% (wt.) can, in most cases, not only improve the efficiency and reduce overall emissions but may be economically advantageous, as well. Beyond a 10% Biomass Ratio, however, the efficiency begins to drop due to the rising pretreatment costs, but the system itself still remains more efficient than from using coal alone (between 0.2 and 0.3 points on average). The CO2 emissions decrease by about 7000 tons/MW‐year compared to the baseline (no biomass), making the plant carbon negative with only 10% biomass in the feedstock. In addition, implementing a supercritical steam cycle raises the efficiency (1.6 percentage points) and lowers the capital costs ($300/kW), regardless of plant layout. Implementing post‐combustion CCS consistently causes a drop in efficiency (at least 7–8 points) from the baseline and increases the costs by $3000–$4000/kW and $0.06–$0.07/kW‐h. The SOx emissions also decrease by about 190 tons/year (7.6 × 10?6 tons/MW‐year). Finally, the CCS cost is around $65–$72 per ton of CO2. For pre‐combustion CCS, sour shift appears to be superior both economically and thermally to sweet shift in the current study. Sour shift is always cheaper, (by a difference of about $600/kW and $0.02‐$0.03/kW‐h), easier to implement, and also 2–3 percentage points more efficient. The economic difference is fairly marginal, but the trend is inversely proportional to the efficiency, with cost of electricity decreasing by 0.5 cents/kW‐h from 0% to 10% biomass ratio (BMR) and rising 2.5 cents/kW‐h from 10% to 50% BMR. Pre‐combustion CCS plants are smaller than post‐combustion ones and usually require 25% less energy for CCS due to their compact size for processing fuel flow only under higher pressure (450 psi), versus processing the combusted gases at near‐atmospheric pressure. Finally, the CO2 removal cost for sour shift is around $20/ton, whereas sweet shift's cost is around $30/ton, which is much cheaper than that of post‐combustion CCS: about $60–$70/ton. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号